On the automatic control of step size and order in one-step collocation methods with higher derivatives
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1060-1077 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of symmetric E-methods with higher derivatives having the convergence order four, six, or eight, implicit extrapolation schemes are constructed for the numerical solution of ordinary differential equations. The combined step size and order control used in these schemes implements an automatic global error control in the extrapolation E-methods, which makes it possible to solve differential problems in automatic mode up to the accuracy specified by the user (without taking into account round-off errors). The theory of adjoint and symmetric methods presented in this paper is an extension of the results that are well known for the conventional Runge-Kutta schemes to methods involving higher derivatives. Since the implicit extrapolation based on multi-stage Runge-Kutta methods can be very time consuming, special emphasis is made on the efficiency of calculations. All the theoretical conclusions of this paper are confirmed by the numerical results obtained for test problems.
@article{ZVMMF_2010_50_6_a7,
     author = {G. Yu. Kulikov and E. Yu. Khrustal\"eva},
     title = {On the automatic control of step size and order in one-step collocation methods with higher derivatives},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1060--1077},
     year = {2010},
     volume = {50},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a7/}
}
TY  - JOUR
AU  - G. Yu. Kulikov
AU  - E. Yu. Khrustalëva
TI  - On the automatic control of step size and order in one-step collocation methods with higher derivatives
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1060
EP  - 1077
VL  - 50
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a7/
LA  - ru
ID  - ZVMMF_2010_50_6_a7
ER  - 
%0 Journal Article
%A G. Yu. Kulikov
%A E. Yu. Khrustalëva
%T On the automatic control of step size and order in one-step collocation methods with higher derivatives
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1060-1077
%V 50
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a7/
%G ru
%F ZVMMF_2010_50_6_a7
G. Yu. Kulikov; E. Yu. Khrustalëva. On the automatic control of step size and order in one-step collocation methods with higher derivatives. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1060-1077. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a7/

[1] Kollatts L., Chislennye metody resheniya differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1953

[2] Henrici P., Discrete variable methods in ordinary differential equations, John Wiley and Sons, New York–London, 1962 | MR | Zbl

[3] Shtetter Kh., Analiz metodov diskretizatsii dlya obyknovennykh differentsialnykh uravnenii, Mir, M., 1978 | MR

[4] Kalitkin H. H., Chislennye metody, Nauka, M., 1978 | MR

[5] Rakitskii Yu. V., Ustinov S. M., Chernorutskii N. G., Chislennye metody resheniya zhestkikh sistem, Fizmatlit, M., 1979

[6] Ortega Dzh., Pul U., Vvedenie v chislennye metody resheniya differentsialnykh uravnenii, Nauka, M., 1986 | MR | Zbl

[7] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[8] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR

[9] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[10] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR

[11] Arushanyan A. B., Zaletkin S. F., Chislennoe reshenie obyknovennykh differentsialnykh uravnenii na Fortrane, Izd-vo MGU, M., 1990 | Zbl

[12] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[13] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[14] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya v prikladnoi matematike i mekhanike, Editorial URSS, M., 1999 | MR

[15] Hairer E., Lubich C., Wanner G., Geometric numerical integration: structure preserving algorithms for ordinary differential equations, Springer, Berlin, 2002 | MR

[16] Butcher J. C., Numerical methods for ordinary differential equations, John Wiley and Sons, Chichester, 2003 | MR

[17] Gaiton A., Fiziologiya krovoobrascheniya: Minutnyi ob'em serdtsa i ego regulyatsiya, Meditsina, M., 1969

[18] Grodinz F., Teoriya regulirovaniya i biologicheskie sistemy, Mir, M., 1966

[19] Marchuk G. I., Matematicheskie metody v immunologii. Vychislitelnye metody i eksperimenty, Nauka, M., 1991 | MR

[20] Nerreter V., Raschet elektricheskikh tsepei na personalnoi EVM, Energoatomizdat, M., 1991

[21] Fehlberg E., “Eine methode zur fehlerverkleinerung bein Runge–Kutta verfahren”, Z. angew. Math. und Mech., 38 (1958), 421–426 | DOI | MR | Zbl

[22] Fehlberg E., “New high-order Runge–Kutta formulas with step size control for systems of first and second order differential equations”, A. angew. Math. und Mech., 44, Sonderheft T17–T19 (1964) | MR

[23] Kastlunger K. H., Wanner G., “Runge–Kutta processes with multiple nodes”, Computing, 9 (1972), 9–24 | DOI | MR | Zbl

[24] Kastlunger K. H., Wanner G., “On Turan type implicit Runge–Kutta methods”, Computing, 9 (1972), 317–325 | DOI | MR | Zbl

[25] Norsett S. P., “One-step methods of Hermite type for numerical integration of stiff systems”, BIT, 14 (1974), 63–77 | DOI | MR

[26] Kulikov G. Yu., Merkulov A. I., “Ob odnoshagovykh kollokatsionnykh metodakh so starshimi proizvodnymi dlya resheniya obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:10 (2004), 1782–1807 | MR | Zbl

[27] Kulikov G. Yu., Merkulov A. I., Khrustaleva E. Yu., “On a family of $A$-stable collocation methods with high derivatives”, Comput. Sci. – ICCS 2004, Proc. 4th Internat. Conf. (Krakow, Poland, June 6–9 2004), v. II, Lect. Notes in Comput. Sci., 3037, 2004, 73–80 | MR | Zbl

[28] Khovanskii A. N., Prilozhenie tsepnykh drobei i ikh obobschenii k voprosam priblizhennogo analiza, Gostekhteorizdat, M., 1956

[29] Kulikov G. Yu., Merkulov A. I., Shindin S. K., “Asymptotic error estimate for general Newton-type methods and its application to differential equations”, Rus. J. Numer. Anal. Math. Modelling, 22:6 (2007), 567–590 | DOI | MR | Zbl

[30] Aulchenko S. M., Latypov A. F., Nikulichev Yu. V., “Metod chislennogo integrirovaniya sistem obyknovennykh differentsialnykh uravnenii s ispolzovaniem interpolyatsionnykh polinomov Ermita”, Zh. vychisl. matem. i matem. fiz., 38:10 (1998), 1665–1670 | MR

[31] Kulikov G. Yu., Khrustaleva E. Yu., Merkulov A. I., “Symmetric Runge–Kutta methods with higher derivatives and quadratic extrapolation”, Comput. Sci. – ICCS 2006, Proc. 6th Internat. Conf. (Reading, UK, May 28–31, 2006), v. I, Lect. Notes in Comput. Sci., 3991, 2006, 117–123 | Zbl

[32] Kulikov G. Yu., Khrustaleva E. Yu., “Ob avtomaticheskom upravlenii razmerom shaga i poryadkom v neyavnykh odnoshagovykh ekstrapolyatsionnykh metodakh”, Zh. vychisl. matem. i matem. fiz., 48:9 (2008), 1580–1606 | MR

[33] Bulirsch R., Stoer J., “Numerical treatment of ordinary differential equations by extrapolation methods”, Numer. Math., 8 (1966), 1–13 | DOI | MR | Zbl

[34] Deuflhard P., “Order and stepsize control in extrapolation methods”, Numer. Math., 41 (1983), 399–422 | DOI | MR | Zbl

[35] Deuflhard P., “Recent progress in extrapolation methods for ordinary differential equations”, SIAM Rev., 27 (1985), 505–535 | DOI | MR | Zbl

[36] Gragg W. B., Repeated extrapolation to the limit in the numerical solution of ordinary differential equations, Thesis, Univ. of California, 1964

[37] Gragg W. B., “On extrapolation algorithms for ordinary initial value problems”, SIAM J. Numer. Anal., Ser. B, 2 (1965), 384–403 | DOI | MR | Zbl

[38] Kulikov G. Yu., Chislennye metody s kontrolem globalnoi oshibki dlya resheniya differentsialnykh i differentsialno-algebraicheskikh uravnenii indeksa 1, Dis. ...dokt. fiz.-matem. nauk, Ulyanovskii gos. un-t, Ulyanovsk, 2002

[39] Kulikov G. Yu., “On implicit extrapolation methods for ordinary differential equations”, Rus. J. Numer. Anal. Maht. Modeling, 17:1 (2002), 41–69 | MR

[40] Kulikov G. Yu., “O neyavnykh ekstrapolyatsionnykh metodakh dlya sistem differentsialno-algebraicheskikh uravnenii”, Vestn. MGU. Ser. 1. Matem. Mekhan., 2002, no. 5, 3–7 | MR

[41] Kulikov G. Yu., “One-step methods and implicit extrapolation technique for index 1 differential-algebraic systems”, Rus. J. Numer. Anal. Math. Modelling, 19:6 (2004), 527–553 | DOI | MR | Zbl

[42] Kulikov G. Yu., Khrustaleva E. Yu., “Ob avtomaticheskom upravlenii razmerom shaga i poryadkom v yavnykh odnoshagovykh ekstrapolyatsionnykh metodakh”, Zh. vychisl. matem. i matem. fiz., 48:8 (2008), 1392–1405 | MR | Zbl

[43] Kulikov G. Yu., “A theory of symmetric one-step methods for differential-algebraic equations”, Rus. J. Numer. Anal. Math. Modelling, 12:6 (1997), 501–523 | DOI | MR | Zbl

[44] Kulikov G. Yu., “Revision of the theory of symmetric one-step methods for ordinary differential equations”, Korean J. Comput. Appl. Math., 5:3 (1998), 579–600 | MR | Zbl

[45] Kulikov G. Yu., “Ob ustoichivosti simmetrichnykh formul Runge–Kutty”, Dokl. RAN, 389:2 (2003), 164–168 | MR | Zbl

[46] Kulikov G. Yu., “Symmetric Runge–Kutta methods and their stability”, Rus. J. Numer. Anal. Math. Modelling, 18:1 (2003), 13–41 | DOI | MR | Zbl

[47] Wanner G., “Runge-methods with expansion in even powers of $h$”, Computing, 11 (1973), 81–85 | DOI | MR | Zbl

[48] Kulikov G. Yu., “Ob odnom sposobe kontrolya oshibki dlya metodov Runge-Kutty”, Zh. vychisl. matem. i matem. fiz., 38:10 (1998), 1651–1653 | MR | Zbl

[49] Kulikov G. Yu., “A local-global version of a stepsize control for Runge–Kutta methods”, Korean J. Comput. Appl. Math., 7:2 (2000), 289–318 | MR | Zbl

[50] Kulikov G. Yu., “Ob ispolzovanii iteratsionnykh metodov nyutonovskogo tipa dlya resheniya sistem differentsialno-algebraicheskikh uravnenii indeksa 1”, Zh. vychisl. matem. i matem. fiz., 41:8 (2001), 1180–1189 | MR | Zbl

[51] Kulikov G. Yu., Shindin S. K., “On a family of cheap symmetric one-step methods of order four”, Proc. Comput. Sci.– ICCS 2006, 6th Internat. Conf. (Reading, UK, May 28–31, 2006), v. I, Lect. Notes in Comput. Sci., 3991, 2006, 781–785

[52] Kulikov G. Yu., Shindin S. K., “Numerical tests with Gauss-type nested implicit Runge–Kutta formulas”, Comput. Sci. – ICCS 2007, Proc. 7th Internat. Conf. (Beijing, China, May 27–30, 2007), v. I, Lect. Notes in Comput. Sci., 4487, 2007, 136–143

[53] Kulikov G. Yu., Shindin S. K., “Adaptive nested implicit Runge–Kutta formulas of Gauss-type”, Appl. Numer. Math., 59 (2009), 707–722 | DOI | MR | Zbl

[54] Kulikov G. Yu., “Automatic error control in the Gauss-type nested implicit Runge–Kutta formula of order 6”, Rus. J. Numer. Anal. Math. Modelling, 24:2 (2009), 123–144 | DOI | MR | Zbl