@article{ZVMMF_2010_50_6_a6,
author = {L. M. Skvortsov},
title = {Diagonally implicit {Runge-Kutta} methods for differential-algebraic equations of indices 2 and~3},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1047--1059},
year = {2010},
volume = {50},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a6/}
}
TY - JOUR AU - L. M. Skvortsov TI - Diagonally implicit Runge-Kutta methods for differential-algebraic equations of indices 2 and 3 JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1047 EP - 1059 VL - 50 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a6/ LA - ru ID - ZVMMF_2010_50_6_a6 ER -
%0 Journal Article %A L. M. Skvortsov %T Diagonally implicit Runge-Kutta methods for differential-algebraic equations of indices 2 and 3 %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1047-1059 %V 50 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a6/ %G ru %F ZVMMF_2010_50_6_a6
L. M. Skvortsov. Diagonally implicit Runge-Kutta methods for differential-algebraic equations of indices 2 and 3. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1047-1059. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a6/
[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999
[2] Alexander R., “Diagonally implicit Runge–Kutta methods for stiff O.D.E.'s”, SIAM J. Numer. Anal., 14:6 (1977), 1006–1021 | DOI | MR | Zbl
[3] Cameron F., Palmroth M., Piche R., “Quasi stage order conditions for SDIRK methods”, Appl. Numer. Math., 42:1–3 (2002), 61–75 | DOI | MR | Zbl
[4] Cameron F., “A class of low order DIRK methods for a class of DAE”, Appl. Numer. Math., 31:1 (1999), 1–16 | DOI | MR | Zbl
[5] Williams R., Burrage K., Cameron I., Kerr M., “A four-stage index 2 diagonally implicit Runge–Kutta method”, Appl. Numer. Math., 40:3 (2002), 415–432 | DOI | MR | Zbl
[6] Skvortsov L. M., “Diagonalno neyavnye FSAL-metody Runge–Kutty dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Matem. modelirovanie, 14:2 (2002), 3–17 | MR | Zbl
[7] Skvortsov L. M., “Tochnost metodov Runge–Kutty pri reshenii zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 43:9 (2003), 1374–1384 | MR | Zbl
[8] Kvoerno A., “Singly diagonally implicit Runge–Kutta methods with an explicit first stage”, BIT, 44:3 (2004), 489–502 | DOI | MR
[9] Skvortsov L. M., “Diagonalno neyavnye metody Runge–Kutty dlya zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2209–2222 | MR
[10] Hairer E., Lubich C., Roche M., The numerical solution of differential-algebraic systems by Runge–Kutta methods, Lect. Notes in Math., 1409, Springer-Verlag, Berlin, 1989 | MR | Zbl
[11] Jay L., “Convergence of a class of Runge–Kutta methods for differential-algebraic systems of index 2”, BIT, 33:1 (1993), 137–150 | DOI | MR | Zbl
[12] Jay L., “Convergence of Runge–Kutta methods for differential-algebraic systems of index 3”, Appl. Numer. Math., 17:2 (1995), 97–118 | DOI | MR | Zbl
[13] Khairer E., Nërsett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR
[14] Butcher J. C., Numerical methods for ordinary differential equations, John Wiley Sons, Chichester, 2003 | MR
[15] Guzhev D. S., Kalitkin N. N., “Optimalnaya skhema dlya paketa ROS4”, Matem. modelirovanie, 6:11 (1994), 128–138 | MR | Zbl
[16] Kozlov O. S., Skvortsov L. M., Khodakovskii V. V., Reshenie differentsialnykh i differentsialno-algebraicheskikh uravnenii v programmnom komplekse “MVTU”, http://model.exponenta.ru/mvtu/20051121.html