Diagonally implicit Runge-Kutta methods for differential-algebraic equations of indices 2 and 3
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1047-1059 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Diagonally implicit Runge-Kutta methods satisfying additional order conditions are examined. These conditions make it possible to solve differential algebraic equations of indices two and three to higher accuracy. Advantages of the proposed methods over other known techniques are demonstrated using test problems.
@article{ZVMMF_2010_50_6_a6,
     author = {L. M. Skvortsov},
     title = {Diagonally implicit {Runge-Kutta} methods for differential-algebraic equations of indices 2 and~3},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1047--1059},
     year = {2010},
     volume = {50},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a6/}
}
TY  - JOUR
AU  - L. M. Skvortsov
TI  - Diagonally implicit Runge-Kutta methods for differential-algebraic equations of indices 2 and 3
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1047
EP  - 1059
VL  - 50
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a6/
LA  - ru
ID  - ZVMMF_2010_50_6_a6
ER  - 
%0 Journal Article
%A L. M. Skvortsov
%T Diagonally implicit Runge-Kutta methods for differential-algebraic equations of indices 2 and 3
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1047-1059
%V 50
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a6/
%G ru
%F ZVMMF_2010_50_6_a6
L. M. Skvortsov. Diagonally implicit Runge-Kutta methods for differential-algebraic equations of indices 2 and 3. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1047-1059. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a6/

[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[2] Alexander R., “Diagonally implicit Runge–Kutta methods for stiff O.D.E.'s”, SIAM J. Numer. Anal., 14:6 (1977), 1006–1021 | DOI | MR | Zbl

[3] Cameron F., Palmroth M., Piche R., “Quasi stage order conditions for SDIRK methods”, Appl. Numer. Math., 42:1–3 (2002), 61–75 | DOI | MR | Zbl

[4] Cameron F., “A class of low order DIRK methods for a class of DAE”, Appl. Numer. Math., 31:1 (1999), 1–16 | DOI | MR | Zbl

[5] Williams R., Burrage K., Cameron I., Kerr M., “A four-stage index 2 diagonally implicit Runge–Kutta method”, Appl. Numer. Math., 40:3 (2002), 415–432 | DOI | MR | Zbl

[6] Skvortsov L. M., “Diagonalno neyavnye FSAL-metody Runge–Kutty dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Matem. modelirovanie, 14:2 (2002), 3–17 | MR | Zbl

[7] Skvortsov L. M., “Tochnost metodov Runge–Kutty pri reshenii zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 43:9 (2003), 1374–1384 | MR | Zbl

[8] Kvoerno A., “Singly diagonally implicit Runge–Kutta methods with an explicit first stage”, BIT, 44:3 (2004), 489–502 | DOI | MR

[9] Skvortsov L. M., “Diagonalno neyavnye metody Runge–Kutty dlya zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2209–2222 | MR

[10] Hairer E., Lubich C., Roche M., The numerical solution of differential-algebraic systems by Runge–Kutta methods, Lect. Notes in Math., 1409, Springer-Verlag, Berlin, 1989 | MR | Zbl

[11] Jay L., “Convergence of a class of Runge–Kutta methods for differential-algebraic systems of index 2”, BIT, 33:1 (1993), 137–150 | DOI | MR | Zbl

[12] Jay L., “Convergence of Runge–Kutta methods for differential-algebraic systems of index 3”, Appl. Numer. Math., 17:2 (1995), 97–118 | DOI | MR | Zbl

[13] Khairer E., Nërsett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[14] Butcher J. C., Numerical methods for ordinary differential equations, John Wiley Sons, Chichester, 2003 | MR

[15] Guzhev D. S., Kalitkin N. N., “Optimalnaya skhema dlya paketa ROS4”, Matem. modelirovanie, 6:11 (1994), 128–138 | MR | Zbl

[16] Kozlov O. S., Skvortsov L. M., Khodakovskii V. V., Reshenie differentsialnykh i differentsialno-algebraicheskikh uravnenii v programmnom komplekse “MVTU”, http://model.exponenta.ru/mvtu/20051121.html