@article{ZVMMF_2010_50_6_a5,
author = {R. V. Brizitskiǐ and A. S. Savenkova},
title = {Inverse extremal problems for the {Maxwell} equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1038--1046},
year = {2010},
volume = {50},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a5/}
}
TY - JOUR AU - R. V. Brizitskiǐ AU - A. S. Savenkova TI - Inverse extremal problems for the Maxwell equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1038 EP - 1046 VL - 50 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a5/ LA - ru ID - ZVMMF_2010_50_6_a5 ER -
R. V. Brizitskiǐ; A. S. Savenkova. Inverse extremal problems for the Maxwell equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1038-1046. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a5/
[1] Caconi F., Colton D., Haddar H., “The linear sampling method for anisotropic media”, J. Comput. Appl. Math., 146 (2003), 285–299 | DOI | MR
[2] Caconi F., Colton D., “A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media”, Proc. Edinburg Math. Soc., 46 (2003), 293–314 | DOI | MR
[3] Cakoni F., Colton D., Monk P., “The electromagnetic inverse scattering problem for partially coated Lipschitz domains”, Proc. Edinburg Math. Soc., 134 (2004), 661–682 | DOI | MR | Zbl
[4] Cakoni F., Haddar H., “Identification of partially coated anisotropic buried objects using electromagnetic Cauchy data”, J. Integral Equations Appl., 134:3 (2007), 359–389 | DOI | MR
[5] Costabel M., “A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains”, Math. Meth. Appl. Sci., 12 (1990), 365–368 | DOI | MR | Zbl
[6] Costable M., Dauge M., “On resultat de densite pour les equations de Maxwell regularisees dans undomain lipschitzien”, C. R. acad. Sci. Paris, 327 (1998), 849–854 | MR
[7] Colton D., Kress R., Inverse acoustic and electromagnetic scattering theory, 2nd ed., Springer, Berlin, 1998 | MR | Zbl
[8] Leis R., Initial boundary value problems in mathematical physics, John Wiley Sons, New York, 1996 | MR
[9] Alekseev G. V., Chebotarev A. Yu., “Obratnye zadachi akusticheskogo potentsiala”, Zh. vychisl. matem. i matem. fiz., 25:8 (1985), 1189–1199 | MR
[10] Alekseev G. V., “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplovoi konvektsii”, Vestn. NGU. Matem., mekhan. i informatika, 6:2 (2006), 6–32
[11] Alekseev G. V., “Koeffitsientnye obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 1055–1076 | MR
[12] Savenkova S. A., “Asimptotika optimalnogo upravleniya v zadache rasseyaniya garmonicheskikh voln na prepyatstvii”, Zh. vychisl. matem. i matem. fiz., 47:9 (2007), 1635–1641 | MR
[13] Savenkova A. S., “Multiplikativnoe upravlenie v zadache rasseyaniya dlya uravneniya Gelmgoltsa”, Sibirskii zhurnal industr. matem., 10:1 (2007), 128–139 | MR
[14] Alekseev G. V., Soboleva O. V., Tereshko D. A., “Zadachi identifikatsii dlya statsionarnoi modeli massoperenosa”, Prikl. mekhan. i tekhn. fiz., 49:4 (2008), 24–35 | MR
[15] Brizitskii R. V., Savenkova S. A., “Asimptotika reshenii zadach multiplikativnogo upravleniya dlya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 48:9 (2008), 1607–1618 | MR
[16] Brizitskii R. V., Kozhushnaya E. R., “Edinstvennost resheniya koeffitsientnoi obratnoi ekstremalnoi zadachi dlya uravneniya konvektsii-diffuzii-reaktsii”, Dalnevost. matem. zhurnal, 8:2 (2008), 3–11 | MR
[17] Valli A., Orthogonal decompositions of $\mathbf{L}^2(\Omega)^3$, Preprint UTM 493, Dept. Math. Univ. Toronto, Galamen, 1995
[18] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl
[19] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[20] Sea Zh., Optimizatsiya.Teoriya i algoritmy, Mir, M., 1973