@article{ZVMMF_2010_50_6_a4,
author = {A. V. Razgulin},
title = {A weighted estimate for the rate of convergence of a projection-difference scheme for a parabolic equation and its application to the approximation of the initial-data control problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1023--1037},
year = {2010},
volume = {50},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a4/}
}
TY - JOUR AU - A. V. Razgulin TI - A weighted estimate for the rate of convergence of a projection-difference scheme for a parabolic equation and its application to the approximation of the initial-data control problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1023 EP - 1037 VL - 50 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a4/ LA - ru ID - ZVMMF_2010_50_6_a4 ER -
%0 Journal Article %A A. V. Razgulin %T A weighted estimate for the rate of convergence of a projection-difference scheme for a parabolic equation and its application to the approximation of the initial-data control problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1023-1037 %V 50 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a4/ %G ru %F ZVMMF_2010_50_6_a4
A. V. Razgulin. A weighted estimate for the rate of convergence of a projection-difference scheme for a parabolic equation and its application to the approximation of the initial-data control problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1023-1037. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a4/
[1] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, Springer-Verlag, New York, 1997 | MR
[2] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl
[3] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999
[4] Babin A. V., Vishik M. I., Attractors of evolution equations, Studies in mathematics and its applications, 25, Elsevier, North Holland, 1992 | MR
[5] Zlotnik A. A., “Otsenka skorosti skhodimosti v $L_2$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 18:6 (1978), 1454–1465 | MR | Zbl
[6] Zlotnik A. A., “Otsenka skorosti skhodimosti v $V_2(\mathcal{Q}_T)$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1980, no. 1, 27–36 | MR
[7] Smagin V. V., “Otsenka skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Matem. sb., 188:3 (1997), 143–160 | MR
[8] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionnogo i proektsionno-raznostnogo metodov dlya parabolicheskikh uravnenii”, Matem. sb., 185:11 (1994), 79–94 | Zbl
[9] Razgulin A. V., “Approksimatsiya zadachi upravleniya preobrazovaniem argumentov v nelineinom parabolicheskom uravnenii”, Zh. vychisl. matem. i matem. fiz., 41:12 (2001), 1844–1856 | MR | Zbl
[10] Razgulin A. V., “Proektsionno-raznostnaya skhema dlya parabolicheskogo funktsionalno-differentsialnogo uravneniya s dvumernym preobrazovaniem argumentov”, Zh. vychisl. matem. i matem. fiz., 45:10 (2005), 1848–1859 | MR | Zbl
[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[12] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Faktorial, M., 2001 | Zbl
[13] Pulin D. S., Razgulin A. V., “Distortion suppression optimization for a class of nonlinear optical systems with feedback”, Comput. Math. Modelling, 17:2 (2006), 155–171 | DOI | MR | Zbl