A weighted estimate for the rate of convergence of a projection-difference scheme for a parabolic equation and its application to the approximation of the initial-data control problem
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1023-1037
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A new technique is proposed for analyzing the convergence of a projection difference scheme as applied to the initial value problem for a linear parabolic operator-differential equation. The technique is based on discrete analogues of weighted estimates reflecting the smoothing property of solutions to the differential problem for $t>0$. Under certain conditions on the right-hand side, a new convergence rate estimate of order $O(\sqrt{\tau}+h)$ is obtained in a weighted energy norm without making any a priori assumptions on the additional smoothness of weak solutions. The technique leads to a natural projection difference approximation of the problem of controlling nonsmooth initial data. The convergence rate estimate obtained for the approximating control problems is of the same order $O(\sqrt{\tau}+h)$ as for the projection difference scheme.
            
            
            
          
        
      @article{ZVMMF_2010_50_6_a4,
     author = {A. V. Razgulin},
     title = {A weighted estimate for the rate of convergence of a projection-difference scheme for a parabolic equation and its application to the approximation of the initial-data control problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1023--1037},
     publisher = {mathdoc},
     volume = {50},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a4/}
}
                      
                      
                    TY - JOUR AU - A. V. Razgulin TI - A weighted estimate for the rate of convergence of a projection-difference scheme for a parabolic equation and its application to the approximation of the initial-data control problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1023 EP - 1037 VL - 50 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a4/ LA - ru ID - ZVMMF_2010_50_6_a4 ER -
%0 Journal Article %A A. V. Razgulin %T A weighted estimate for the rate of convergence of a projection-difference scheme for a parabolic equation and its application to the approximation of the initial-data control problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1023-1037 %V 50 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a4/ %G ru %F ZVMMF_2010_50_6_a4
A. V. Razgulin. A weighted estimate for the rate of convergence of a projection-difference scheme for a parabolic equation and its application to the approximation of the initial-data control problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1023-1037. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a4/
