Algorithms for the exact and approximate statistical modeling of Poisson ensembles
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1005-1016 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Algorithms for exact and approximate statistical simulation of inhomogeneous Poisson ensembles are proposed, and their complexities are analyzed and compared. In this context, a new modification of the maximum cross section algorithm is constructed in which the sequence of rejections is determined by one value of a standard random variable.
@article{ZVMMF_2010_50_6_a2,
     author = {T. A. Averina and G. A. Mikhaǐlov},
     title = {Algorithms for the exact and approximate statistical modeling of {Poisson} ensembles},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1005--1016},
     year = {2010},
     volume = {50},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a2/}
}
TY  - JOUR
AU  - T. A. Averina
AU  - G. A. Mikhaǐlov
TI  - Algorithms for the exact and approximate statistical modeling of Poisson ensembles
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1005
EP  - 1016
VL  - 50
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a2/
LA  - ru
ID  - ZVMMF_2010_50_6_a2
ER  - 
%0 Journal Article
%A T. A. Averina
%A G. A. Mikhaǐlov
%T Algorithms for the exact and approximate statistical modeling of Poisson ensembles
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1005-1016
%V 50
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a2/
%G ru
%F ZVMMF_2010_50_6_a2
T. A. Averina; G. A. Mikhaǐlov. Algorithms for the exact and approximate statistical modeling of Poisson ensembles. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1005-1016. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a2/

[1] Belyaev Yu. K., Veroyatnost i matematicheskaya statistika. Entsiklopediya, Nauchn. izd-vo BPE, M., 1999, 525–526

[2] Karlin S., Osnovy teorii sluchainykh protsessov, Mir, M., 1971 | MR | Zbl

[3] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Uchebnoe posobie, Izdat. tsentr “Akademiya”, M., 2006

[4] Mikhailov G. A., Nekotorye voprosy teorii metodov Monte-Karlo, Nauka, Novosibirsk, 1974 | MR

[5] Averina T. A., “Novye algoritmy statisticheskogo modelirovaniya neodnorodnykh puassonovskikh ansamblei”, Zh. vychisl. matem. i matem. fiz., 50:1 (2010), 16–24 | MR

[6] Ekert A., Hayden P., Inamori H., “Basic concepts in quantum computation”, 2000, arXiv: http://arXiv.org/abs/quant-ph/0011013

[7] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984

[8] Marchuk G. I., Mikhailov G. A., Nazaraliev M. A. i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | Zbl

[9] Coleman W. A., “Mathematical verification of a certain Monte Carlo sampling technique and applications of the techniques to radiation transport problems”, J. Nucl. Sci. and Engng., 32:1 (1968), 76–81

[10] Mikhailov G. A., “Metod modelirovaniya dliny svobodnogo probega chastits”, Atomnaya energiya, 28:2 (1970), 175

[11] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR

[12] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2003