Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1148-1158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Unsteady rarefied gas flows in narrow channels accompanied by shock wave formation and propagation were studied by solving the Boltzmann kinetic equation. The formation of a shock wave from an initial discontinuity of gas parameters, its propagation, damping, and reflection from the channel end face were analyzed. The Boltzmann equation was solved using finite differences. The collision integral was calculated on a fixed velocity grid by a conservative projection method. A detector of shock wave position was developed to keep track of the wave front. Parallel computations were implemented on a cluster of computers with the use of the MPI technology. Plots of shock wave damping and detailed flow fields are presented.
@article{ZVMMF_2010_50_6_a13,
     author = {Yu. Yu. Kloss and F. G. Cheremisin and P. V. Shuvalov},
     title = {Solution of the {Boltzmann} equation for unsteady flows with shock waves in narrow channels},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1148--1158},
     year = {2010},
     volume = {50},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a13/}
}
TY  - JOUR
AU  - Yu. Yu. Kloss
AU  - F. G. Cheremisin
AU  - P. V. Shuvalov
TI  - Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1148
EP  - 1158
VL  - 50
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a13/
LA  - ru
ID  - ZVMMF_2010_50_6_a13
ER  - 
%0 Journal Article
%A Yu. Yu. Kloss
%A F. G. Cheremisin
%A P. V. Shuvalov
%T Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1148-1158
%V 50
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a13/
%G ru
%F ZVMMF_2010_50_6_a13
Yu. Yu. Kloss; F. G. Cheremisin; P. V. Shuvalov. Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1148-1158. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a13/

[1] Nobuya Miyoshi, Shuhei Nagata, Ikuya Kinefuchi et al., “Development of ultra small shock tube for high energy molecular beam source”, 26th Internat. Symp. Rarefied Gas Dynamics, AIP Conf. Proc., 1084, Melville, New York, 2009, 557–562

[2] Sun M., Ogava T., Takayama K., “Shock propagation in narrow channel”, 23rd Internat. Symp. Shock Waves, Fort Worth, Texas, USA, 2002

[3] Brouillette M., “Shock waves at microscales”, Shock Waves, 13 (2003), 3–12 | DOI

[4] Garen W., Meyerer B., Udagava S., Maeno K., “Shock waves in mini-tubes: Influences on the scaling parameter $S$”, paper 2062, 26-th Internat. Symp. Shock Waves, Springer, Goettingen, 2007

[5] Mirshecari G., Brouillette M., “One-dimensional model for microscale shock tube”, Shock Waves, 19 (2009), 25–38 | DOI

[6] Larina I. N., Rykov V. A., Shakhov E. M., “Nestatsionarnye techeniya razrezhennogo gaza mezhdu parallelnymi plastinami”, Izv. RAN. Mekhan. zhidkosti i gaza, 1997, no. 2, 165–173 | Zbl

[7] Zeitoun D. E., Graur I. E., Burtschell Y. et al., “Continuum and kinetic simulation of shock wave propagation in long microchannel”, 26th Internat. Symp. Rarefied Gas Dynamics, AIP Conf. Proc., 1084, Melville, New York, 2009, 464–469

[8] Cheremisin F. G., “Konservativnyi metod vychisleniya integrala stolknovenii Boltsmana”, Dokl. RAN, 357:1 (1997), 53–56 | MR

[9] Cheremisin F. G., “Reshenie kineticheskogo uravneniya Boltsmana dlya vysokoskorostnykh techenii”, Zh. vychisl. matem. i matem. fiz., 46:2 (2006), 329–343 | MR

[10] Tcheremissine F. G., “Solution of the Boltzmann kinetic equation for low speed flows”, Transport Theory and Statist. Phys., 37:5 (2008), 564–575 | DOI | MR | Zbl

[11] Korobov N. M., Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl

[12] Kloss Yu. Yu., Cheremisin F. G., Khokhlov N. I., Shurygin B. A., “Programmno-modeliruyuschaya sreda dlya issledovaniya techei gaza v mikro- i nanostrukturakh na osnove resheniya uravneniya Boltsmana”, At. energiya, 105:4 (2008), 211–217

[13] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976