@article{ZVMMF_2010_50_6_a13,
author = {Yu. Yu. Kloss and F. G. Cheremisin and P. V. Shuvalov},
title = {Solution of the {Boltzmann} equation for unsteady flows with shock waves in narrow channels},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1148--1158},
year = {2010},
volume = {50},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a13/}
}
TY - JOUR AU - Yu. Yu. Kloss AU - F. G. Cheremisin AU - P. V. Shuvalov TI - Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1148 EP - 1158 VL - 50 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a13/ LA - ru ID - ZVMMF_2010_50_6_a13 ER -
%0 Journal Article %A Yu. Yu. Kloss %A F. G. Cheremisin %A P. V. Shuvalov %T Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 1148-1158 %V 50 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a13/ %G ru %F ZVMMF_2010_50_6_a13
Yu. Yu. Kloss; F. G. Cheremisin; P. V. Shuvalov. Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 1148-1158. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a13/
[1] Nobuya Miyoshi, Shuhei Nagata, Ikuya Kinefuchi et al., “Development of ultra small shock tube for high energy molecular beam source”, 26th Internat. Symp. Rarefied Gas Dynamics, AIP Conf. Proc., 1084, Melville, New York, 2009, 557–562
[2] Sun M., Ogava T., Takayama K., “Shock propagation in narrow channel”, 23rd Internat. Symp. Shock Waves, Fort Worth, Texas, USA, 2002
[3] Brouillette M., “Shock waves at microscales”, Shock Waves, 13 (2003), 3–12 | DOI
[4] Garen W., Meyerer B., Udagava S., Maeno K., “Shock waves in mini-tubes: Influences on the scaling parameter $S$”, paper 2062, 26-th Internat. Symp. Shock Waves, Springer, Goettingen, 2007
[5] Mirshecari G., Brouillette M., “One-dimensional model for microscale shock tube”, Shock Waves, 19 (2009), 25–38 | DOI
[6] Larina I. N., Rykov V. A., Shakhov E. M., “Nestatsionarnye techeniya razrezhennogo gaza mezhdu parallelnymi plastinami”, Izv. RAN. Mekhan. zhidkosti i gaza, 1997, no. 2, 165–173 | Zbl
[7] Zeitoun D. E., Graur I. E., Burtschell Y. et al., “Continuum and kinetic simulation of shock wave propagation in long microchannel”, 26th Internat. Symp. Rarefied Gas Dynamics, AIP Conf. Proc., 1084, Melville, New York, 2009, 464–469
[8] Cheremisin F. G., “Konservativnyi metod vychisleniya integrala stolknovenii Boltsmana”, Dokl. RAN, 357:1 (1997), 53–56 | MR
[9] Cheremisin F. G., “Reshenie kineticheskogo uravneniya Boltsmana dlya vysokoskorostnykh techenii”, Zh. vychisl. matem. i matem. fiz., 46:2 (2006), 329–343 | MR
[10] Tcheremissine F. G., “Solution of the Boltzmann kinetic equation for low speed flows”, Transport Theory and Statist. Phys., 37:5 (2008), 564–575 | DOI | MR | Zbl
[11] Korobov N. M., Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl
[12] Kloss Yu. Yu., Cheremisin F. G., Khokhlov N. I., Shurygin B. A., “Programmno-modeliruyuschaya sreda dlya issledovaniya techei gaza v mikro- i nanostrukturakh na osnove resheniya uravneniya Boltsmana”, At. energiya, 105:4 (2008), 211–217
[13] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976