Sharp estimates for the rate of convergence of Fourier series of functions of a complex variable in the space $L\sb 2(D,p(z))$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 999-1004 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sharp estimates are derived for the convergence rate of Fourier series in terms of orthogonal systems of functions for certain classes of complex variable functions, and the Kolmogorov $N$-widths of these classes are determined. These issues find applications in numerical analysis methods.
@article{ZVMMF_2010_50_6_a1,
     author = {V. A. Abilov and F. V. Abilova and M. K. Kerimov},
     title = {Sharp estimates for the rate of convergence of {Fourier} series of functions of a complex variable in the space $L\sb 2(D,p(z))$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {999--1004},
     year = {2010},
     volume = {50},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a1/}
}
TY  - JOUR
AU  - V. A. Abilov
AU  - F. V. Abilova
AU  - M. K. Kerimov
TI  - Sharp estimates for the rate of convergence of Fourier series of functions of a complex variable in the space $L\sb 2(D,p(z))$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 999
EP  - 1004
VL  - 50
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a1/
LA  - ru
ID  - ZVMMF_2010_50_6_a1
ER  - 
%0 Journal Article
%A V. A. Abilov
%A F. V. Abilova
%A M. K. Kerimov
%T Sharp estimates for the rate of convergence of Fourier series of functions of a complex variable in the space $L\sb 2(D,p(z))$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 999-1004
%V 50
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a1/
%G ru
%F ZVMMF_2010_50_6_a1
V. A. Abilov; F. V. Abilova; M. K. Kerimov. Sharp estimates for the rate of convergence of Fourier series of functions of a complex variable in the space $L\sb 2(D,p(z))$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 999-1004. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a1/

[1] Abilov V. A., “Otsenka poperechnika odnogo klassa funktsii v prostranstve $L_2(p(x), (a,b))$”, Dokl. Bolgarskoi AN, 45:10 (1992), 23–24 | MR | Zbl

[2] Abilova F. V., “O nailuchshem priblizhenii funktsii algebraicheskimi mnogochlenami v srednem”, Dokl. Bolgarskoi AN, 46:12 (1993), 9–11 | MR | Zbl

[3] Abilov V. A., Abilova F. V., “Priblizhenie funktsii algebraicheskimi mnogochlenami v srednem”, Izv. vuzov. Matematika, 418:3 (1997), 61–63 | MR | Zbl

[4] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti ryadov Fure po ortogonalnym mnogochlenam v prostranstve $L_2((a,b), p(x))$”, Zh. vychisl. matem. i matem. fiz., 49:6 (2009), 966–980 | MR | Zbl

[5] Abilov V. A., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti dvoinykh ryadov Fure po ortogonalnym mnogochlenam v prostranstve $L_2((a,b)\times(c,d); p(x)q(y))$”, Zh. vychisl. matem. i matem. fiz., 49:8 (2009), 1364–1368 | MR | Zbl

[6] Smirnov V. I., Lebedev N. A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.–L., 1964 | MR

[7] Kolmogorov A. N., Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1987 | MR

[8] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR

[9] Mergelyan S. N., “O polnote sistem analiticheskikh funktsii”, Uspekhi matem. nauk, 4:4(56) (1953), 2–63 | MR | Zbl