@article{ZVMMF_2010_50_6_a0,
author = {V. A. Kazeev and E. E. Tyrtyshnikov},
title = {The structure of the {Hessian} and the efficient implementation of {Newton's} method in the problem of the canonical approximation of tensors},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {979--998},
year = {2010},
volume = {50},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a0/}
}
TY - JOUR AU - V. A. Kazeev AU - E. E. Tyrtyshnikov TI - The structure of the Hessian and the efficient implementation of Newton's method in the problem of the canonical approximation of tensors JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 979 EP - 998 VL - 50 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a0/ LA - ru ID - ZVMMF_2010_50_6_a0 ER -
%0 Journal Article %A V. A. Kazeev %A E. E. Tyrtyshnikov %T The structure of the Hessian and the efficient implementation of Newton's method in the problem of the canonical approximation of tensors %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 979-998 %V 50 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a0/ %G ru %F ZVMMF_2010_50_6_a0
V. A. Kazeev; E. E. Tyrtyshnikov. The structure of the Hessian and the efficient implementation of Newton's method in the problem of the canonical approximation of tensors. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 6, pp. 979-998. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_6_a0/
[1] Bellman R., Adaptive control processes: A guided tour, Princeton Univ. Press, Princeton, NJ, 1961 | MR | Zbl
[2] Beylkin G., Mohlenkamp M. J., “Algorithms for numerical analysis in high dimensions”, SIAM. J. Sci. Comput., 26:6 (2005), 2133–2159 | DOI | MR | Zbl
[3] Evrim A., Bülent V., “Unsupervised multiway data analysis: A literature survey”, IEEE Trans. Knowledge and Data Engng., 21:1 (2009), 6–20 | DOI
[4] Zhang T., Golub G. H., “Rank-one apporoximation to high order tensors”, SIAM J. Matrix Analys. and Appl., 23:2 (2001), 534–550 | DOI | MR | Zbl
[5] Oseledets I. V., Savostyanov D. V., “Minimizatsionnye metody approksimatsii tenzorov i ikh sravnenie”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1725–1734 | MR
[6] Kazeev V. A., “O probleme kanonicheskogo razlozheniya tenzorov, odnom algoritme ee resheniya v primenenii ego k poisku bystrykh matrichnykh algoritmov”, Sovr. probl. fundamentalnykh i prikl. nauk, Tr. 51-i nauchn. konf. MFTI, v. VIII, Probl. sovrem. fiz., MFTI, M., 2008, 225–228
[7] Espig M., Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen Dimensionen, Ph. D. thesis, Univ. Leipzig, 2008
[8] Caroll J. D., Chang J. J., “Analysis of individual differences in multidimensional scaling via an $N$-way generalization of “Eckart-Young” decomposition”, Psychometrika, 35 (1970), 283–319 | DOI
[9] Harshman R. A., “Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis”, UCLA Working Papers in Phonetics, 16 (1970), 1–84
[10] de Silva V., Lim L. H., “Tensor rank and the ill-posedness of the best low-rank approximation problem”, SIAM J. Matrix Analys. and Appl., 30:3 (2008), 1084–1127 | DOI | MR
[11] Tyrtyshnikov E. E., Matrichnyi analiz i lineinaya algebra, Fizmatlit, M., 2007
[12] Mohlenkamp M. J., Monzón L., “Trigonometric identities and sums of separable functions”, Math. Intelligencer, 27:2 (2005), 65–69 | DOI | MR | Zbl
[13] Steihaug T., “The conjugate gradient method and trust regions in large scale optimization”, SIAM J. Numer. Analys., 20:3 (1983), 626–637 | DOI | MR | Zbl
[14] Nocedal J., Wright S., Numerical optimization, Springer, New York, 1999 | MR | Zbl
[15] Shultz G. A., Schnabel R. B., Byrd R. H., “A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties”, SIAM J. Numer. Analys., 22:1 (1985), 47–67 | DOI | MR | Zbl
[16] Byrd R. H., Shultz G. A., “A trust region algorithm for nonlinearly constrained optimization”, SIAM J. Numer. Analys., 24:5 (1987), 1152–1170 | DOI | MR | Zbl
[17] Byrd R. H., Schnabel R. B., Shultz G. A., “Approximate solution of the trust regions problem by minimization over two-dimensional subspaces”, Math. Program., 40 (1988), 247–263 | DOI | MR | Zbl
[18] Gay D. M., “Computing optimal locally constrained steps”, SIAM J. Sci. and Statist. Comput., 2:2 (1981), 186–197 | DOI | MR | Zbl
[19] Sorensen D. C., “Newton's method with a model trust modification”, SIAM J. Numer. Analys., 19:3 (1982), 409–426 | DOI | MR | Zbl
[20] Djoković D. Ž., “On the Hadamard product of matrices”, Math. Z., 86:5 (1965), 395 | DOI | MR | Zbl
[21] Horn R. A., Johnson C. R., Matrix analysis, Cambridge Univ. Press, 1985 | MR | Zbl
[22] Strassen V., “Gaussian elimination is not optimal”, Numer. Math., 13 (1969), 354–356 | DOI | MR | Zbl
[23] Landsberg J. M., “The border rank of the multiplication of $2\times2$ matrices in seven”, J. Amer. Math. Soc., 19:2 (2005), 447–459 | DOI | MR
[24] Flad H.-J., Khoromskij B. N., Savostyanov D. V., Tyrtyshnikov E. E., “Verification of the cross 3D algorithm on quantum chemistry data”, Rus. J. Numer. Analys. and Math. Modelling, 23:4 (2008), 210–220 | MR