@article{ZVMMF_2010_50_5_a8,
author = {A. I. Tolstykh},
title = {On families of compact fourth- and fifth-order approximations involving the inversion of two-point operators for equations with convective terms},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {894--907},
year = {2010},
volume = {50},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a8/}
}
TY - JOUR AU - A. I. Tolstykh TI - On families of compact fourth- and fifth-order approximations involving the inversion of two-point operators for equations with convective terms JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 894 EP - 907 VL - 50 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a8/ LA - ru ID - ZVMMF_2010_50_5_a8 ER -
%0 Journal Article %A A. I. Tolstykh %T On families of compact fourth- and fifth-order approximations involving the inversion of two-point operators for equations with convective terms %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 894-907 %V 50 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a8/ %G ru %F ZVMMF_2010_50_5_a8
A. I. Tolstykh. On families of compact fourth- and fifth-order approximations involving the inversion of two-point operators for equations with convective terms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 894-907. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a8/
[1] Tolstykh A. I., “Ob odnom semeistve kompaktnykh approksimatsii i osnovannykh na nikh multioperatornykh approksimatsiyakh zadannogo poryadka”, Dokl. RAN, 403:2 (2005), 172–177 | MR | Zbl
[2] Tolstykh A. I., “Development of arbitrary-order multioperators-based schemes for parallel calculations. 2: Families of compact approximations with two-diagonal inversions and related multioperators”, J. Comput. Phys., 227 (2008), 2922–2940 | DOI | MR | Zbl
[3] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1977 | MR | Zbl
[4] Tolstykh A. I., “O postroenii skhem zadannogo poryadka s lineinymi kombinatsiyami operatorov”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1206–1220 | MR | Zbl
[5] Tolstykh A. I., High accuracy non-centered compact difference schemes for fluid dynamics applic, World Scientific, Singapore, 1994 | Zbl
[6] Lipavskii M. V., Tolstykh A. I., “O sravnitelnoi effektivnosti skhem s netsentrirovannymi kompaktnymi approksimatsiyami”, Zh. vychisl. matem. i matem. fiz., 39:10 (1999), 1705–1720 | MR
[7] Liu X.-D., Osher S., Chan T., “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115 (1994), 200–212 | DOI | MR | Zbl
[8] Lipavskii M. V., Tolstykh A. I., Chigerev E. N., “O skheme s multioperatornymi approksimatsiyami 9-go poryadka dlya parallelnykh vychislenii i o ee primenenii v zadachakh pryamogo chislennogo modelirovaniya”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1433–1452 | MR
[9] Adams N. A., Sharif K., “A high-resolution compact-ENO scheme for shock-turbulence interaction problems”, J. Comput. Phys., 127 (1996), 27–51 | DOI | MR | Zbl
[10] Toro E. F., Titarev V. A., “ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions”, J. Comput. Phys., 202 (2004), 196–215 | DOI | MR
[11] Zalesac S. T., “Fully multidimensionalflux-corrected transport algorithms for fluids”, J. Comput. Phys., 31 (1979), 335 | DOI | MR