On families of compact fourth- and fifth-order approximations involving the inversion of two-point operators for equations with convective terms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 894-907 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New one-parameter families of compact approximations of the first-order derivatives are presented that use inversion procedures for two-point operators. Properties of these families are investigated, and finite difference schemes based on those families for problems with convective terms written in the form of conservation laws are described. Estimates of the accuracy of numerical solutions to benchmark problems are given.
@article{ZVMMF_2010_50_5_a8,
     author = {A. I. Tolstykh},
     title = {On families of compact fourth- and fifth-order approximations involving the inversion of two-point operators for equations with convective terms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {894--907},
     year = {2010},
     volume = {50},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a8/}
}
TY  - JOUR
AU  - A. I. Tolstykh
TI  - On families of compact fourth- and fifth-order approximations involving the inversion of two-point operators for equations with convective terms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 894
EP  - 907
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a8/
LA  - ru
ID  - ZVMMF_2010_50_5_a8
ER  - 
%0 Journal Article
%A A. I. Tolstykh
%T On families of compact fourth- and fifth-order approximations involving the inversion of two-point operators for equations with convective terms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 894-907
%V 50
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a8/
%G ru
%F ZVMMF_2010_50_5_a8
A. I. Tolstykh. On families of compact fourth- and fifth-order approximations involving the inversion of two-point operators for equations with convective terms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 894-907. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a8/

[1] Tolstykh A. I., “Ob odnom semeistve kompaktnykh approksimatsii i osnovannykh na nikh multioperatornykh approksimatsiyakh zadannogo poryadka”, Dokl. RAN, 403:2 (2005), 172–177 | MR | Zbl

[2] Tolstykh A. I., “Development of arbitrary-order multioperators-based schemes for parallel calculations. 2: Families of compact approximations with two-diagonal inversions and related multioperators”, J. Comput. Phys., 227 (2008), 2922–2940 | DOI | MR | Zbl

[3] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[4] Tolstykh A. I., “O postroenii skhem zadannogo poryadka s lineinymi kombinatsiyami operatorov”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1206–1220 | MR | Zbl

[5] Tolstykh A. I., High accuracy non-centered compact difference schemes for fluid dynamics applic, World Scientific, Singapore, 1994 | Zbl

[6] Lipavskii M. V., Tolstykh A. I., “O sravnitelnoi effektivnosti skhem s netsentrirovannymi kompaktnymi approksimatsiyami”, Zh. vychisl. matem. i matem. fiz., 39:10 (1999), 1705–1720 | MR

[7] Liu X.-D., Osher S., Chan T., “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115 (1994), 200–212 | DOI | MR | Zbl

[8] Lipavskii M. V., Tolstykh A. I., Chigerev E. N., “O skheme s multioperatornymi approksimatsiyami 9-go poryadka dlya parallelnykh vychislenii i o ee primenenii v zadachakh pryamogo chislennogo modelirovaniya”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1433–1452 | MR

[9] Adams N. A., Sharif K., “A high-resolution compact-ENO scheme for shock-turbulence interaction problems”, J. Comput. Phys., 127 (1996), 27–51 | DOI | MR | Zbl

[10] Toro E. F., Titarev V. A., “ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions”, J. Comput. Phys., 202 (2004), 196–215 | DOI | MR

[11] Zalesac S. T., “Fully multidimensionalflux-corrected transport algorithms for fluids”, J. Comput. Phys., 31 (1979), 335 | DOI | MR