Solution blow-up for a new stationary Sobolev-type equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 876-893 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new nonlinear stationary Sobolev-type equation with a parameter $\eta\in\mathbb{R}^1$ is derived. For $\eta>0$, global solvability in the weak generalized sense is proved in the entire waveguide $\mathbb{S}\otimes\mathbb{R}_+^1$. For $\eta<0$, the strong generalized solution is shown to blow up in a certain waveguide cross section $z=R_0>0$. An upper bound for $R_0$ in terms of the original parameters of the problem is obtained.
@article{ZVMMF_2010_50_5_a7,
     author = {M. O. Korpusov and A. G. Sveshnikov},
     title = {Solution blow-up for a new stationary {Sobolev-type} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {876--893},
     year = {2010},
     volume = {50},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a7/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. G. Sveshnikov
TI  - Solution blow-up for a new stationary Sobolev-type equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 876
EP  - 893
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a7/
LA  - ru
ID  - ZVMMF_2010_50_5_a7
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. G. Sveshnikov
%T Solution blow-up for a new stationary Sobolev-type equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 876-893
%V 50
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a7/
%G ru
%F ZVMMF_2010_50_5_a7
M. O. Korpusov; A. G. Sveshnikov. Solution blow-up for a new stationary Sobolev-type equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 876-893. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a7/

[1] Kalantarov V. K., Ladyzhenskaya O. A., “Formirovanie kollapsov v kvazilineinykh uravneniyakh parabolicheskogo i giperbolicheskogo tipov”, Zap. LOMI, 69, 1977, 77–102 | MR | Zbl

[2] Korpusov M. O., Sveshnikov A. G., “O razrushenii resheniya sistemy uravnenii Oskolkova”, Matem. sb., 200:4 (2009), 83–108 | MR | Zbl

[3] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred. Teoreticheskaya fizika, Nauka, M., 1992 | MR

[4] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[5] Mitidieri E., Pokhozhaev S. I., “Apriornye otsenki i otsutstvie reshenii differentsialnykh neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, 2001

[6] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[7] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Nelineinyi funktsionalnyi analiz i ego prilozheniya k uravneniyam v chastnykh proizvodnykh, Nauchn. mir, M., 2008

[8] Levine H. A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t = -Au + F(u)$”, Arch. Ration. Mech. and Analys., 51 (1973), 371–386 | MR | Zbl