Structure of quasi-Newton minimization methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 817-831 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A scheme for the design of quasi-Newton methods for unconstrained optimization problems is examined. A criterion for the positive definiteness of the quasi-Newton modification of the Hessian matrix is given. Quasi-Newton methods are described that cannot be placed within the classical scheme specified by the family of Broyden methods.
@article{ZVMMF_2010_50_5_a2,
     author = {A. M. Vetoshkin},
     title = {Structure of {quasi-Newton} minimization methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {817--831},
     year = {2010},
     volume = {50},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a2/}
}
TY  - JOUR
AU  - A. M. Vetoshkin
TI  - Structure of quasi-Newton minimization methods
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 817
EP  - 831
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a2/
LA  - ru
ID  - ZVMMF_2010_50_5_a2
ER  - 
%0 Journal Article
%A A. M. Vetoshkin
%T Structure of quasi-Newton minimization methods
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 817-831
%V 50
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a2/
%G ru
%F ZVMMF_2010_50_5_a2
A. M. Vetoshkin. Structure of quasi-Newton minimization methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 817-831. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a2/

[1] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[2] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[3] Pshenichnyi B. N., Danilin Yu. M., Chislennye metody v ekstremalnykh zadachakh, Nauka, M., 1975 | MR | Zbl

[4] Fletcher R., Practical methods of optimization, J. Willy and Sons, N.Y., 1986 | MR

[5] Dennis Dzh. ml., Shnabel R., Chislennye metody bezuslovnoi optimizatsii i resheniya nelineinykh uravnenii, Mir, M., 1988 | MR | Zbl

[6] Gill F., Myurrei U., Rait M., Prakticheskaya optimizatsiya, Mir, M., 1985 | MR

[7] Broyden C. G., “Quasi-Newton methods and their application to function minimization”, Math. Comput., 21 (1967), 368–381 | DOI | MR | Zbl

[8] Broyden C. G., “The convergence of a class of Double-rank minimization algorithms”, J. Inst. Math. Appl., 1970, no. 6, 76–90 ; 222–236 | DOI | MR | Zbl

[9] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[10] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[11] Malozemov V. N., Monako M. F., Petrov A. V., “Formuly Frobeniusa, Shermana–Morrisona i blizkie voprosy”, Zh. vychisl. matem. i matem. fiz., 42:10 (2002), 1459–1465 | MR | Zbl

[12] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[13] Prasolov V. V., Zadachi i teoremy lineinoi algebry, Fizmatlit, M., 1996 | Zbl

[14] Sukharev A. G., Timokhov A. V., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR | Zbl