Polar figure computation by a kernel method from a set of individual grain orientations on $SO(3)$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 949-966
Voir la notice de l'article provenant de la source Math-Net.Ru
The polar figures of materials are computed by a kernel method using a given sample of orientations on the group $SO(3)$. The computational errors are analyzed depending on recovery parameters, such as the sample size, regularization parameter, and the number of series terms taken into account in the computation. Numerical results and visual representations of polar figures are given for a model specimen with a texture described by a central normal distribution on $SO(3)$.
@article{ZVMMF_2010_50_5_a12,
author = {K. N. Roginskii and T. I. Savyolova},
title = {Polar figure computation by a kernel method from a set of individual grain orientations on $SO(3)$},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {949--966},
publisher = {mathdoc},
volume = {50},
number = {5},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a12/}
}
TY - JOUR AU - K. N. Roginskii AU - T. I. Savyolova TI - Polar figure computation by a kernel method from a set of individual grain orientations on $SO(3)$ JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 949 EP - 966 VL - 50 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a12/ LA - ru ID - ZVMMF_2010_50_5_a12 ER -
%0 Journal Article %A K. N. Roginskii %A T. I. Savyolova %T Polar figure computation by a kernel method from a set of individual grain orientations on $SO(3)$ %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 949-966 %V 50 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a12/ %G ru %F ZVMMF_2010_50_5_a12
K. N. Roginskii; T. I. Savyolova. Polar figure computation by a kernel method from a set of individual grain orientations on $SO(3)$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 949-966. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a12/