Polar figure computation by a kernel method from a set of individual grain orientations on $SO(3)$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 949-966 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The polar figures of materials are computed by a kernel method using a given sample of orientations on the group $SO(3)$. The computational errors are analyzed depending on recovery parameters, such as the sample size, regularization parameter, and the number of series terms taken into account in the computation. Numerical results and visual representations of polar figures are given for a model specimen with a texture described by a central normal distribution on $SO(3)$.
@article{ZVMMF_2010_50_5_a12,
     author = {K. N. Roginskii and T. I. Savyolova},
     title = {Polar figure computation by a kernel method from a set of individual grain orientations on $SO(3)$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {949--966},
     year = {2010},
     volume = {50},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a12/}
}
TY  - JOUR
AU  - K. N. Roginskii
AU  - T. I. Savyolova
TI  - Polar figure computation by a kernel method from a set of individual grain orientations on $SO(3)$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 949
EP  - 966
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a12/
LA  - ru
ID  - ZVMMF_2010_50_5_a12
ER  - 
%0 Journal Article
%A K. N. Roginskii
%A T. I. Savyolova
%T Polar figure computation by a kernel method from a set of individual grain orientations on $SO(3)$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 949-966
%V 50
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a12/
%G ru
%F ZVMMF_2010_50_5_a12
K. N. Roginskii; T. I. Savyolova. Polar figure computation by a kernel method from a set of individual grain orientations on $SO(3)$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 949-966. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a12/

[1] Inoue H., Ishio M., Takasugi T., “Texture, tensile properties and press formability of Mg-3Al-Ti glad sheets produced by roll-bonding”, ICOTOM 14, Materials Science Forum, 2005, 645–650

[2] Chon S. N., Liu S. M., Kim T. N., Park J. K., “Effected of deformation route on mechanical properties of CP-Ti deformed by equal channel angular pressing (ECAP)”, Key Engineering Materials, 2007, no. 345–346, 125–128 | DOI

[3] Vasin R. N., Nikitin A. N., Plotnikova E. M., Ullemaier K. Z., “Klassifikatsiya kristallograficheskikh tekstur kvartsa v odnofaznykh i mnogofaznykh gornykh porodakh po dannym neitronograficheskikh izmerenii”, Izv. TulGU. Ser. Fizika, 2006, no. 1.6, 126–151 | MR

[4] Detavernier C., Lavoie C., “Texture in thin films”, ICOTOM 14, Materials Science Forum, 2005, 1333–1342

[5] Gottstein G., Al Samman T., “Texture development in pure Mg and Mg Alloy AZ31”, ICOTOM 14, Materials Science Forum, 2005, 623–632

[6] Mulders J. J. L., Day A. P., “Three-dimensional texture analysis”, ICOTOM 14, Materials Science Forum, 2005, 237–242

[7] Savelova T. I., Bukharova T. I., Predstavlenie gruppy $SU(2)$ i ikh primenenie, MIFI, M., 1996

[8] Savelova T. I., Sypchenko M. V., “Vychislenie funktsii raspredeleniya orientatsii po naboru otdelnykh orientirovok na gruppe vraschenii $SO(3)$”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 1015–1028 | MR

[9] http://www.ebsd.com/ebsdbeginners1.htm

[10] Borovkov M. V., Savelova T. I., Normalnye raspredeleniya na $SO(3)$, MIFI, M., 2002

[11] Borovkov M. V., Savelova T. I., “Vychislenie normalnykh raspredelenii na gruppe vraschenii metodom Monte-Karlo”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 112–128 | MR | Zbl

[12] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | MR

[13] Paltsev B. V., Sfericheskie funktsii, MFTI, M., 2000

[14] Aganin K. P., Savelova T. I., “Otsenki tochnosti yadernykh i proektsionnykh metodov vosstanovleniya funktsii raspredeleniya orientatsii na gruppe vraschenii $SO(3)$”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1087–1101 | Zbl

[15] Borovkov M., Savelova T., “The computational approaches to calculate normal distributions on the rotation group”, Mag. Appl. Cristallogr., 40 (2007), 449–455 | DOI

[16] Savelova T. I., Sypchenko M. V., Poluchenie orientatsii otdelnykh zeren polikristallov pri EBSD izmereniyakh i vychislenie FRO i PF, Preprint 001-2009, MIFI, M., 2009, 20 pp. | MR

[17] Savelova T. I., Sypchenko M. V., “Otsenka tochnosti dlya vosstanovleniya funktsii raspredeleniya zeren dlya zavisimykh orientatsii i s uchetom razmerov zeren”, Zh. vychisl. matem. i matem. fiz., 49:5 (2009), 879–890 | MR | Zbl

[18] Dzhekson D., Ryady Fure i ortogonalnye polinomy, M., 1948

[19] Bukharova T. I., “Primenenie gaussovskikh raspredelenii dlya opisaniya tekstur geksagonalnykh polikristallov”, Fizika zemli, 1993, no. 6, 59–67

[20] http://www.texture.de/index_e.htm

[21] Valerie Randle, Olaf Engler, Introduction to texture analysis: Macrotexture, microtexture and orientation mapping, Gordon Breach, Amsterdam, 2000