Application of mosaic-skeleton approximations in the simulation of three-dimensional vortex flows by vortex segments
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 937-948 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The computations in a vortex method for three-dimensional fluid dynamics simulation are accelerated by applying mosaic-skeleton approximations of matrices in the velocity computations. A modified vortex segment method is proposed in which mosaic-skeleton matrix approximations are effectively used to solve the problem of a vorticity field developing in an unbounded three-dimensional domain and in separated flow problems. Examples of the numerical solution of model fluid dynamic problems, such as the motion of a pair of vortex rings, the flow past a hemisphere, and the flow past an octahedral cylinder, are given that illustrate the capability of accelerating the computations while preserving the qualitative and quantitative description of the flow.
@article{ZVMMF_2010_50_5_a11,
     author = {A. A. Aparinov and A. V. Setukha},
     title = {Application of mosaic-skeleton approximations in the simulation of three-dimensional vortex flows by vortex segments},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {937--948},
     year = {2010},
     volume = {50},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a11/}
}
TY  - JOUR
AU  - A. A. Aparinov
AU  - A. V. Setukha
TI  - Application of mosaic-skeleton approximations in the simulation of three-dimensional vortex flows by vortex segments
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 937
EP  - 948
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a11/
LA  - ru
ID  - ZVMMF_2010_50_5_a11
ER  - 
%0 Journal Article
%A A. A. Aparinov
%A A. V. Setukha
%T Application of mosaic-skeleton approximations in the simulation of three-dimensional vortex flows by vortex segments
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 937-948
%V 50
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a11/
%G ru
%F ZVMMF_2010_50_5_a11
A. A. Aparinov; A. V. Setukha. Application of mosaic-skeleton approximations in the simulation of three-dimensional vortex flows by vortex segments. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 937-948. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a11/

[1] Tyrtyshnikov E. E., “Metody bystrogo umnozheniya i reshenie uravnenii”, Matrichnye metody i vychisleniya, In-t vychisl. matem. RAN, M., 1999, 4–41

[2] Tyrtyshnykov E. E., “Mosaic-skeleton approximations”, Calcolo, 33:1–2 (1996), 47–57 | DOI | MR

[3] Barnes J., Hut P., “A hierarchical $O(N\, \mathrm{Log}\, N)$ force calculation algorithm”, Nature, 324:4 (1986), 446–449 | DOI

[4] Kornev N., Leder A., Mazaev K., “Comparison of two fast algorithms for the calculation of flow velocities induced by a three dimensional vortex field”, Schiffbauforschung, 40:1 (2001), 47–55

[5] Anderson C., “A method of local corrections for computing the velocity field due to a distribution of vortex blobs”, J. Comput. Phys., 62 (1986), 111–123 | DOI | MR | Zbl

[6] Dynnikova G. Ya., “Raschet obtekaniya krugovogo tsilindra na osnove dvumernykh uranenii Nave–Stoksa pri bolshikh chislakh Reinoldsa s vysokim razresheniem v pogranichnom sloe”, Dokl. RAN, 422:6 (2008), 755–757 | Zbl

[7] Goreinov S. A., “Mozaichno-skeletonnye approksimatsii matrits, porozhdennykh asimptoticheski gladkimi i ostsillyatsionnymi yadrami”, Matrichnye metody i vychisleniya, In-t vychisl. matem. RAN, M., 1999

[8] Kiryakin V. Yu., Setukha A. V., “O skhodimosti chislennogo metoda resheniya trekhmernykh uravnenii Eilera v lagranzhevykh koordinatakh”, Differents. ur-niya, 43:9 (2007), 1263–1276 | MR | Zbl

[9] Gutnikov V. A., Lifanov I. K., Setukha A. V., “O modelirovanii aerodinamiki zdanii i sooruzhenii metodom zamknutykh vikhrevykh ramok”, Izv. RAN. Mekhan. zhidkosti i gaza, 2006, no. 4, 78–92 | Zbl

[10] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, TOO “Yanus”, M., 1995 | MR | Zbl

[11] Kiryakin V. Yu., “Modelirovanie obtekaniya ob'ektov metodom diskretnykh vikhrei s predstavleniem vikhrevoi peleny izolirovannymi vikhrevymi chastitsami”, Nauchn. vestn. MGTU GA. Ser. Aeromekhan. i prochnost, 2008, no. 125(1), 78–82

[12] Gurzhii A. A., Konstantinov M. Yu., Meleshko V. V., “Vzaimodeistvie koaksialnykh vikhrevykh kolets v idealnoi zhidkosti”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1988, no. 2, 78–84 | MR

[13] Bogomolov D. V., Marchevskii I. K., Setukha A. V., Scheglov G. A., “Chislennoe modelirovanie dvizheniya pary vikhrevykh kolets v idealnoi zhidkosti metodami diskretnykh vikhrevykh elementov”, Inzhenernaya fiz., 2008, no. 4, 8–14 | MR

[14] Spravochnik aviakonstruktora, v. 1, Aerodinamika samoleta, TsAGI, M., 1937

[15] Savitskii G. A., Vetrovaya nagruzka na zdaniya i sooruzheniya, Izd-vo lit. po stroitelstvu, M., 1972