Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 923-936 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of the explicit hybrid monotone second-order finite difference scheme for the use on unstructured 3D grids is proposed. In this scheme, the components of the momentum density in the Cartesian coordinates are used as the working variables; the scheme is conservative. Numerical results obtained using an implementation of the proposed solution procedure on an unstructured 3D grid in a spherical layer in the model of the global circulation of the Titan’s (a Saturn’s moon) atmosphere are presented.
@article{ZVMMF_2010_50_5_a10,
     author = {V. S. Mingalev and I. V. Mingalev and O. V. Mingalev and A. M. Oparin and K. G. Orlov},
     title = {Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured {3D} grid},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {923--936},
     year = {2010},
     volume = {50},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a10/}
}
TY  - JOUR
AU  - V. S. Mingalev
AU  - I. V. Mingalev
AU  - O. V. Mingalev
AU  - A. M. Oparin
AU  - K. G. Orlov
TI  - Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 923
EP  - 936
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a10/
LA  - ru
ID  - ZVMMF_2010_50_5_a10
ER  - 
%0 Journal Article
%A V. S. Mingalev
%A I. V. Mingalev
%A O. V. Mingalev
%A A. M. Oparin
%A K. G. Orlov
%T Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 923-936
%V 50
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a10/
%G ru
%F ZVMMF_2010_50_5_a10
V. S. Mingalev; I. V. Mingalev; O. V. Mingalev; A. M. Oparin; K. G. Orlov. Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 923-936. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a10/

[1] Belotserkovskii O. M., Guschin V. A., Konshin V. N., “Metod rasschepleniya dlya issledovaniya techenii stratifitsirovannoi zhidkosti so svobodnoi poverkhnostyu”, Zh. vychisl. matem. i matem. fiz., 27:4 (1987), 594–609 | MR

[2] Guschin V. A., Matyushin P. V., “Chislennoe modelirovanie prostranstvennykh otryvnykh techenii okolo sfery”, Zh. vychisl. matem. i matem. fiz., 37:9 (1997), 1122–1137 | MR

[3] Gushchin V. A., Kostomarov A. V., Matyushin P. V., Pavlyukova E. R., “Direct numerical simulation of the transitional separated fluid flows around a sphere”, Japan Soc. CFD/CFD Journal, 10:3 (2001), 344–349 | MR

[4] Oparin A. M., “Chislennoe modelirovanie problem, svyazannykh s intensivnym razvitiem gidrodinamicheskikh neustoichivostei”, Novoe v chisl. modelirovanii: algoritmy, vychisl. eksperiment, rezultaty, Nauka, M., 2000

[5] Belotserkovskii O. M., Kraginskii L. M., Oparin A. M., “Chislennoe modelirovanie prostranstvennykh techenii v stratifitsirovannoi atmosfere, vyzvannykh silnymi krupnomasshtabnymi vozmuscheniyami”, Zh. vychisl. matem. i matem. fiz., 43:11 (2003), 1722–1736 | MR | Zbl

[6] Guschin V. A., Matyushin P. V., “Klassifikatsiya rezhimov otryvnykh techenii zhidkosti okolo sfery pri umerennykh chislakh Reinoldsa”, Matem. modelirovanie: probl. i rezultaty, Nauka, M., 2003, 199–235

[7] Guschin V. A., Matyushin P. V., “Matematicheskoe modelirovanie prostranstvennykh techenii neszhimaemoi zhidkosti”, Matem. modelirovanie, 18:5 (2006), 5–20

[8] Guschin V. A., Matyushin P. V., “Mekhanizmy formirovaniya vikhrei v slede za sferoi pri $200 \mathrm{Re} 380$”, Izv. RAN. Mekhan. zhidkosti i gaza, 2006, no. 5, 135–151

[9] Abalkin I. V., Zhokhova A. V., Chetverushkin B. N., “Kineticheski-soglasovannye skhemy povyshennogo poryadka tochnosti”, Matem. modelirovanie, 13:5 (2001), 53–61 | MR

[10] Zhokhova A. V., Chetverushkin B. N., “Modelirovanie nestatsionarnykh gazodinamicheskikh techenii”, Matem. modelirovanie, 14:4 (2002), 35–44 | Zbl

[11] Mingalev I. V., Mingalev V. S., Mingalev O. V. et al., “First simulation results of Titan's atmosphere dynamics with a global 3-D non-hydrostatic circulation model”, Ann. Geophys., 24:8 (2006), 2115–2129 | DOI

[12] Mingalev I. V., Mingalev V. S., Mingalev O. V. i dr., “Chislennoe modelirovanie tsirkulyatsii atmosfery Titana: interpretatsiya izmerenii zonda Huygens”, Kosmich. issl., 47:2 (2009), 134–145

[13] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981 | MR | Zbl

[14] Mingalev I. V., Mingalev V. S., “Model obschei tsirkulyatsii nizhnei i srednei atmosfery zemli pri zadannom raspredelenii temperatury”, Matem. modelirovanie, 17:5 (2005), 24–40 | Zbl

[15] Mingalev I. V., Mingalev V. S., Mingaleva G. I., “Numerical simulation of the global distributions of the horizontal and vertical wind in the middle atmosphere using a given neutral gas temperature field”, J. Atmos. Solar-Terr. Phys., 69:4/5 (2007), 552–568 | DOI

[16] Bird M. K., Allison M., Asmar S. W. et al., “The vertical profile of winds on Titan”, Nature, 438 (2005), 800–802 | DOI