On commutative algebras of Toeplitz-plus-Hankel matrices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 805-816 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that the entire class of Hermitian Toeplitz matrices can be mapped into a subset of real Toeplitz-plus-Hankel matrices ($(T + H)$-matrices) by one and the same unitary similarity transformation. This fact is refined by showing that the resulting $(T + H)$-matrices are symmetric. Moreover, the symmetry is preserved if this similarity transformation is applied to arbitrary (rather than only Hermitian) Toeplitz matrices and even if it is applied to a much broader class of persymmetric matrices. Let the same similarity transformation be applied to the class of normal Toeplitz matrices. By examining the range of this transformation, commutative algebras are selected that consist of (complex) symmetric $(T + H)$-matrices; in addition, all the matrices in these algebras are normal. An algorithm is proposed for multiplying matrices belonging to these algebras. Its complexity is equivalent to that of multiplying two circulants of order $n$, which is several times less than the complexity of multiplying two general $(T + H)$-matrices.
@article{ZVMMF_2010_50_5_a1,
     author = {Kh. D. Ikramov and Yu. O. Vorontsov},
     title = {On commutative algebras of {Toeplitz-plus-Hankel} matrices},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {805--816},
     year = {2010},
     volume = {50},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a1/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - Yu. O. Vorontsov
TI  - On commutative algebras of Toeplitz-plus-Hankel matrices
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 805
EP  - 816
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a1/
LA  - ru
ID  - ZVMMF_2010_50_5_a1
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A Yu. O. Vorontsov
%T On commutative algebras of Toeplitz-plus-Hankel matrices
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 805-816
%V 50
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a1/
%G ru
%F ZVMMF_2010_50_5_a1
Kh. D. Ikramov; Yu. O. Vorontsov. On commutative algebras of Toeplitz-plus-Hankel matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 805-816. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a1/

[1] Wilkes D. M., Morgera S. D., Noor F., Hayes M. H., “A Hermitian Toeplitz matrix is unitary similar to a real Toeplitz-plus-Hankel matrix”, IEEE Trans. Signal Processing, 39:9 (1991), 2146–2148 | DOI | Zbl

[2] Ikramov Kh. D., Chugunov V. N., “Kriterii normalnosti kompleksnoi teplitsevoi matritsy”, Zh. vychisl. matem. i matem. fiz., 36:2 (1996), 3–10 | MR

[3] Bevilacqua R., Bonani N., Bozzo E., “On algebras of Toeplitz plus Hankel matrices”, Linear Algebra Appl., 223/224 (1995), 99–118 | DOI | MR | Zbl

[4] Ikramov Kh. D., Saveleva N. V., “O nekotorykh kvazidiagonalizuemykh semeistvakh matrits”, Zh. vychisl. matem. i matem. fiz., 38:7 (1998), 1075–1084 | MR | Zbl