@article{ZVMMF_2010_50_5_a0,
author = {O. S. Lebedeva},
title = {Block tensor conjugate gradient-type method for {Rayleigh} quotient minimization in two-dimensional case},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {787--804},
year = {2010},
volume = {50},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a0/}
}
TY - JOUR AU - O. S. Lebedeva TI - Block tensor conjugate gradient-type method for Rayleigh quotient minimization in two-dimensional case JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 787 EP - 804 VL - 50 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a0/ LA - ru ID - ZVMMF_2010_50_5_a0 ER -
%0 Journal Article %A O. S. Lebedeva %T Block tensor conjugate gradient-type method for Rayleigh quotient minimization in two-dimensional case %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 787-804 %V 50 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a0/ %G ru %F ZVMMF_2010_50_5_a0
O. S. Lebedeva. Block tensor conjugate gradient-type method for Rayleigh quotient minimization in two-dimensional case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 5, pp. 787-804. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_5_a0/
[1] Saad Y., “Numerical methods for large eigenvalue problems”, Algorithms and Architectures for Advanced Scient. Comput., Manchester Univ. Press, Manchester, 1992 | MR | Zbl
[2] Parlett B., Simmetrichnaya problema sobstvennykh znachenii, Mir, M., 1983 | MR | Zbl
[3] Pan V. Y., Rami Y., Wang X., “Structured matrices and Newton's iteration: unified approach”, Linear Algebra and Applic., 343 (2002), 233–265 | DOI | MR | Zbl
[4] Olshevsky V., Oseledets I., Tyrtyshnikov E., “Superfast inversion of two-level Toeplitz matrices using Newton iteration and tensor-displacement structure”, Recent Advances in Matrix and Operator Theory, 179, Birkhäuser, Basel, 2008, 229–240 | MR | Zbl
[5] Oseledets I. V., Tyrtyshnikov E. E., “Priblizhennoe obraschenie matrits pri reshenii gipersingulyarnogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 45:2 (2005), 315–326 | MR | Zbl
[6] Hackbusch W., Khoromskij B. N., Tyrtyshnikov E. E., “Approximate iterations for structured matrices”, Numer. Math., 109:3 (2008), 365–383 | DOI | MR | Zbl
[7] Oseledets I., Savostyanov D., Tyrtyshnikov E., “Linear algebra for tensor problems”, Computing, 85:3 (2009), 169–188 | DOI | MR | Zbl
[8] Tyrtyshnikov E., “Preservation of linear constraints in approximation of tensors”, Numer. Math. Theor. Meth. Appl., 2:4 (2009), 421–426 | MR | Zbl
[9] Tyrtyshnikov E. E., “Tensor approximations of matrices generated by asymptotically smooth functions”, Matem. Sb., 194:6 (2003), 147–160 | MR | Zbl
[10] Knyazev A. V., “Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method”, SIAM J. Sci. Comput., 23:2 (2001), 517–541 | DOI | MR | Zbl
[11] Lashuk I., Argentati M., Ovtchinnikov E., Knyazev A., “Preconditioned eigensolver LOBPCG in hypre and PETSc”, Domain Decomposition Methods in Sci. and Eng. XVI, 55, Springer, Berlin, 2007, 635–642 | MR
[12] D'yakonov E. G., Knyazev A. V., “A group iteration method for finding the lowest eigenvalues”, Vestnik Moskov. Univ. Ser. XV. Vychisl. Matem. and Kibernetica, 1982, no. 2, 29–34 ; 81 | MR
[13] Hetmaniuk U., Lehoucq R., “Basis selection in LOBPCG”, J. Comput. Phys., 218:1 (2006), 324–332 | DOI | MR | Zbl