The Cauchy problem for a quasilinear parabolic equation with a large initial gradient and low viscosity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 699-706 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for a quasilinear parabolic equation with a small parameter $\varepsilon$ multiplying the highest derivative is considered. The derivative of the initial function is on the order of $O(1/\rho)$, where $\rho$ is another small parameter. Asymptotic expansions of the solution in powers of $\varepsilon$ and $\rho$ are constructed in various forms.
@article{ZVMMF_2010_50_4_a7,
     author = {S. V. Zakharov},
     title = {The {Cauchy} problem for a quasilinear parabolic equation with a large initial gradient and low viscosity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {699--706},
     year = {2010},
     volume = {50},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a7/}
}
TY  - JOUR
AU  - S. V. Zakharov
TI  - The Cauchy problem for a quasilinear parabolic equation with a large initial gradient and low viscosity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 699
EP  - 706
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a7/
LA  - ru
ID  - ZVMMF_2010_50_4_a7
ER  - 
%0 Journal Article
%A S. V. Zakharov
%T The Cauchy problem for a quasilinear parabolic equation with a large initial gradient and low viscosity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 699-706
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a7/
%G ru
%F ZVMMF_2010_50_4_a7
S. V. Zakharov. The Cauchy problem for a quasilinear parabolic equation with a large initial gradient and low viscosity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 699-706. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a7/

[1] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[2] Ilin A. M., “Zadacha Koshi dlya odnogo kvazilineinogo parabolicheskogo uravneniya s malym parametrom”, Dokl. AN SSSR, 283:3 (1985), 530–534 | MR

[3] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[4] Zakharov S. V., “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s dvumya malymi parametrami”, Dokl. RAN, 422:6 (2008), 733–734 | MR | Zbl

[5] Zakharov S. V., “O raspredelenii tepla v beskonechnom sterzhne”, Matem. zametki, 80:3 (2006), 379–385 | MR | Zbl

[6] Oleinik O. A., “Razryvnye resheniya nelineinykh differentsialnykh uravnenii”, Uspekhi matem. nauk, 12:3 (1957), 3–73 | MR

[7] Ilin A. M., Oleinik O. A., “Asimptoticheskoe povedenie reshenii zadachi Koshi dlya nekotorykh kvazilineinykh uravnenii pri bolshom znachenii vremeni”, Matem. sb., 51:2 (1960), 191–216 | MR

[8] Teodorovich E. V., “Metod renormalizatsionnoi gruppy v zadachakh mekhaniki”, Prikl. matem. i mekhan., 68:2 (2004), 335–367 | MR | Zbl

[9] Babich V. M., “Anzatts Adamara, ego analogi, obobscheniya, prilozheniya”, Algebra i analiz, 3:5 (1991), 1–37 | MR