A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 665-678
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A boundary value problem for a singularly perturbed elliptic reaction-diffusion equation in a vertical strip is considered. The derivatives are written in divergent form. The derivatives in the differential equation are multiplied by a perturbation parameter $\varepsilon^2$, where $\varepsilon$ takes arbitrary values in the interval $(0, 1]$. As $\varepsilon\to0$, a boundary layer appears in the solution of this problem. Using the integrointerpolational method and the condensing grid technique, conservative finite difference schemes on flux grids are constructed that converge $\varepsilon$-uniformly at a rate of $O(N_1^{-2}\ln^2N_1+N_2^{-2})$, where $N_1+1$ and $N_2+1$ are the number of mesh points on the $x_1$-axis and the minimal number of mesh points on a unit interval of the $x_2$-axis respectively. The normalized difference derivatives $\varepsilon^k(\partial^k/\partial x_1^k)u(x)$ ($k = 1$, $2$), which are $\varepsilon$-uniformly bounded and approximate the normalized derivatives in the direction across the boundary layer, and the derivatives along the boundary layer $(\partial^k/\partial x_2^k)u(x)$ ($k = 1$, $2$) converge $\varepsilon$-uniformly at the same rate.
            
            
            
          
        
      @article{ZVMMF_2010_50_4_a5,
     author = {G. I. Shishkin and L. P. Shishkina},
     title = {A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {665--678},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/}
}
                      
                      
                    TY - JOUR AU - G. I. Shishkin AU - L. P. Shishkina TI - A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 665 EP - 678 VL - 50 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/ LA - ru ID - ZVMMF_2010_50_4_a5 ER -
%0 Journal Article %A G. I. Shishkin %A L. P. Shishkina %T A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 665-678 %V 50 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/ %G ru %F ZVMMF_2010_50_4_a5
G. I. Shishkin; L. P. Shishkina. A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 665-678. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/
