A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 665-678

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem for a singularly perturbed elliptic reaction-diffusion equation in a vertical strip is considered. The derivatives are written in divergent form. The derivatives in the differential equation are multiplied by a perturbation parameter $\varepsilon^2$, where $\varepsilon$ takes arbitrary values in the interval $(0, 1]$. As $\varepsilon\to0$, a boundary layer appears in the solution of this problem. Using the integrointerpolational method and the condensing grid technique, conservative finite difference schemes on flux grids are constructed that converge $\varepsilon$-uniformly at a rate of $O(N_1^{-2}\ln^2N_1+N_2^{-2})$, where $N_1+1$ and $N_2+1$ are the number of mesh points on the $x_1$-axis and the minimal number of mesh points on a unit interval of the $x_2$-axis respectively. The normalized difference derivatives $\varepsilon^k(\partial^k/\partial x_1^k)u(x)$ ($k = 1$, $2$), which are $\varepsilon$-uniformly bounded and approximate the normalized derivatives in the direction across the boundary layer, and the derivatives along the boundary layer $(\partial^k/\partial x_2^k)u(x)$ ($k = 1$, $2$) converge $\varepsilon$-uniformly at the same rate.
@article{ZVMMF_2010_50_4_a5,
     author = {G. I. Shishkin and L. P. Shishkina},
     title = {A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {665--678},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/}
}
TY  - JOUR
AU  - G. I. Shishkin
AU  - L. P. Shishkina
TI  - A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 665
EP  - 678
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/
LA  - ru
ID  - ZVMMF_2010_50_4_a5
ER  - 
%0 Journal Article
%A G. I. Shishkin
%A L. P. Shishkina
%T A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 665-678
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/
%G ru
%F ZVMMF_2010_50_4_a5
G. I. Shishkin; L. P. Shishkina. A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 665-678. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/