@article{ZVMMF_2010_50_4_a5,
author = {G. I. Shishkin and L. P. Shishkina},
title = {A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {665--678},
year = {2010},
volume = {50},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/}
}
TY - JOUR AU - G. I. Shishkin AU - L. P. Shishkina TI - A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 665 EP - 678 VL - 50 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/ LA - ru ID - ZVMMF_2010_50_4_a5 ER -
%0 Journal Article %A G. I. Shishkin %A L. P. Shishkina %T A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 665-678 %V 50 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/ %G ru %F ZVMMF_2010_50_4_a5
G. I. Shishkin; L. P. Shishkina. A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 665-678. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/
[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[2] Shlikhting G., Teoriya pogranichnogo sloya, Fizmatgiz, M., 1969
[3] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Monographs Surveys in Pure Appl. Math., Chapman and Hall/CRC, Boca Raton, 2009 | MR | Zbl
[4] Grigorev V. A., Zorin V. M. (red.), Teplotekhnicheskii eksperiment. Spravochnik, Energoizdat, M., 1982
[5] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl
[6] Degtyarev L. M., Favorskii A. P., “Potokovyi variant metoda progonki”, Zh. vychisl. matem. i matem. fiz., 8:3 (1968), 679–684 | MR
[7] Degtyarev L. M., Favorskii A. P., “Potokovyi variant metoda progonki dlya raznostnykh zadach s silno menyayuschimisya koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 9:1 (1969), 211–218 | MR | Zbl
[8] Paskonov V. M., Polezhaev V. I., Chudov L. A., Chislennoe modelirovanie protsessov teplo- i massoobmena, Nauka, M., 1984 | Zbl
[9] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992
[10] Hemker P. W., Shishkin G. I., Shishkina L. P., “$\varepsilon$-Uniform schemes with high-order time-accuracy for parabolic singular perturbation problems”, IMA J. Numer. Anal., 20:1 (2000), 99–121 | DOI | MR | Zbl
[11] Shishkin G. I., “A finite difference scheme on a priori adapted meshes for a singularly perturbed parabolic convection-diffusion equation”, Numer. Math. Theory Methods Appl., 1:2 (2008), 214–234 | MR | Zbl
[12] Shishkin G. I., “Grid approximation of singularly perturbed parabolic equations with piecewise continuous initial-boundary conditions”, Proc. Steklov Inst. Math., 2007, S213–S230
[13] Shishkin G. I., Shishkina L. P., “Raznostnye skhemy dlya singulyarno vozmuschennogo parabolicheskogo uravneniya reaktsii-diffuzii v sluchae sfericheskoi simmetrii”, Zh. vychisl. matem. i matem. fiz., 49:5 (2009), 840–856 | MR | Zbl
[14] Shishkina L., Shishkin G., “Conservative numerical method for a system of semilinear singularly perturbed parabolic reaction-diffusion equations”, Math. Modelling and Analys., 14:2 (2009), 211–228 | DOI | MR | Zbl
[15] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[16] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968
[17] Protter M. H., Weinberger H. F., Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1967 | MR | Zbl
[18] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Uchebnoe posobie, Izd. 6-e, ispr. i dop., Izd-vo MGU, M., 1999 | MR
[19] Shishkin G. I., “Grid approximation of singularly perturbed boundary value problem for quasi-linear parabolic equations in case of complete degeneracy in spatial variables”, Soviet J. Numer. Anal. Math. Modelling, 6:3 (1991), 243–261 | DOI | MR | Zbl
[20] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennoi kraevoi zadachi dlya kvazilineinogo ellipticheskogo uravneniya v sluchae polnogo vyrozhdeniya”, Zh. vychisl. matem. i matem. fiz., 31:12 (1991), 1808–1825 | MR | Zbl
[21] Wesseling P., Principles of computational fluid dynamics, Springer, Berlin, 2001 | MR
[22] Hundsdorfer W., Verwer J., Numerical solution of time-dependent advection-diffusion-reaction equations, Springer, Berlin, 2003 | MR | Zbl