A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 665-678 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem for a singularly perturbed elliptic reaction-diffusion equation in a vertical strip is considered. The derivatives are written in divergent form. The derivatives in the differential equation are multiplied by a perturbation parameter $\varepsilon^2$, where $\varepsilon$ takes arbitrary values in the interval $(0, 1]$. As $\varepsilon\to0$, a boundary layer appears in the solution of this problem. Using the integrointerpolational method and the condensing grid technique, conservative finite difference schemes on flux grids are constructed that converge $\varepsilon$-uniformly at a rate of $O(N_1^{-2}\ln^2N_1+N_2^{-2})$, where $N_1+1$ and $N_2+1$ are the number of mesh points on the $x_1$-axis and the minimal number of mesh points on a unit interval of the $x_2$-axis respectively. The normalized difference derivatives $\varepsilon^k(\partial^k/\partial x_1^k)u(x)$ ($k = 1$, $2$), which are $\varepsilon$-uniformly bounded and approximate the normalized derivatives in the direction across the boundary layer, and the derivatives along the boundary layer $(\partial^k/\partial x_2^k)u(x)$ ($k = 1$, $2$) converge $\varepsilon$-uniformly at the same rate.
@article{ZVMMF_2010_50_4_a5,
     author = {G. I. Shishkin and L. P. Shishkina},
     title = {A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {665--678},
     year = {2010},
     volume = {50},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/}
}
TY  - JOUR
AU  - G. I. Shishkin
AU  - L. P. Shishkina
TI  - A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 665
EP  - 678
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/
LA  - ru
ID  - ZVMMF_2010_50_4_a5
ER  - 
%0 Journal Article
%A G. I. Shishkin
%A L. P. Shishkina
%T A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 665-678
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/
%G ru
%F ZVMMF_2010_50_4_a5
G. I. Shishkin; L. P. Shishkina. A conservative difference scheme for a singularly perturbed elliptic reaction-diffusion equation: approximation of solutions and derivatives. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 665-678. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a5/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[2] Shlikhting G., Teoriya pogranichnogo sloya, Fizmatgiz, M., 1969

[3] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Monographs Surveys in Pure Appl. Math., Chapman and Hall/CRC, Boca Raton, 2009 | MR | Zbl

[4] Grigorev V. A., Zorin V. M. (red.), Teplotekhnicheskii eksperiment. Spravochnik, Energoizdat, M., 1982

[5] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[6] Degtyarev L. M., Favorskii A. P., “Potokovyi variant metoda progonki”, Zh. vychisl. matem. i matem. fiz., 8:3 (1968), 679–684 | MR

[7] Degtyarev L. M., Favorskii A. P., “Potokovyi variant metoda progonki dlya raznostnykh zadach s silno menyayuschimisya koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 9:1 (1969), 211–218 | MR | Zbl

[8] Paskonov V. M., Polezhaev V. I., Chudov L. A., Chislennoe modelirovanie protsessov teplo- i massoobmena, Nauka, M., 1984 | Zbl

[9] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[10] Hemker P. W., Shishkin G. I., Shishkina L. P., “$\varepsilon$-Uniform schemes with high-order time-accuracy for parabolic singular perturbation problems”, IMA J. Numer. Anal., 20:1 (2000), 99–121 | DOI | MR | Zbl

[11] Shishkin G. I., “A finite difference scheme on a priori adapted meshes for a singularly perturbed parabolic convection-diffusion equation”, Numer. Math. Theory Methods Appl., 1:2 (2008), 214–234 | MR | Zbl

[12] Shishkin G. I., “Grid approximation of singularly perturbed parabolic equations with piecewise continuous initial-boundary conditions”, Proc. Steklov Inst. Math., 2007, S213–S230

[13] Shishkin G. I., Shishkina L. P., “Raznostnye skhemy dlya singulyarno vozmuschennogo parabolicheskogo uravneniya reaktsii-diffuzii v sluchae sfericheskoi simmetrii”, Zh. vychisl. matem. i matem. fiz., 49:5 (2009), 840–856 | MR | Zbl

[14] Shishkina L., Shishkin G., “Conservative numerical method for a system of semilinear singularly perturbed parabolic reaction-diffusion equations”, Math. Modelling and Analys., 14:2 (2009), 211–228 | DOI | MR | Zbl

[15] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[16] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[17] Protter M. H., Weinberger H. F., Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1967 | MR | Zbl

[18] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Uchebnoe posobie, Izd. 6-e, ispr. i dop., Izd-vo MGU, M., 1999 | MR

[19] Shishkin G. I., “Grid approximation of singularly perturbed boundary value problem for quasi-linear parabolic equations in case of complete degeneracy in spatial variables”, Soviet J. Numer. Anal. Math. Modelling, 6:3 (1991), 243–261 | DOI | MR | Zbl

[20] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennoi kraevoi zadachi dlya kvazilineinogo ellipticheskogo uravneniya v sluchae polnogo vyrozhdeniya”, Zh. vychisl. matem. i matem. fiz., 31:12 (1991), 1808–1825 | MR | Zbl

[21] Wesseling P., Principles of computational fluid dynamics, Springer, Berlin, 2001 | MR

[22] Hundsdorfer W., Verwer J., Numerical solution of time-dependent advection-diffusion-reaction equations, Springer, Berlin, 2003 | MR | Zbl