On the convexity of the Tikhonov functional and iteratively regularized methods for solving irregular nonlinear operator equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 651-664

Voir la notice de l'article provenant de la source Math-Net.Ru

Domains in a Hilbert space are localized where the Tikhonov functional of an irregular nonlinear operator equation is either strongly convex or has other similar properties. Depending on the sourcewise representability conditions imposed on the solution, four such domains are detected, and their size is estimated. These results are used to substantiate the general scheme for the design of nonlocal two-level iterative processes for solving irregular equations.
@article{ZVMMF_2010_50_4_a4,
     author = {M. Yu. Kokurin},
     title = {On the convexity of the {Tikhonov} functional and iteratively regularized methods for solving irregular nonlinear operator equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {651--664},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a4/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - On the convexity of the Tikhonov functional and iteratively regularized methods for solving irregular nonlinear operator equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 651
EP  - 664
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a4/
LA  - ru
ID  - ZVMMF_2010_50_4_a4
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T On the convexity of the Tikhonov functional and iteratively regularized methods for solving irregular nonlinear operator equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 651-664
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a4/
%G ru
%F ZVMMF_2010_50_4_a4
M. Yu. Kokurin. On the convexity of the Tikhonov functional and iteratively regularized methods for solving irregular nonlinear operator equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 651-664. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a4/