On the convexity of the Tikhonov functional and iteratively regularized methods for solving irregular nonlinear operator equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 651-664 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Domains in a Hilbert space are localized where the Tikhonov functional of an irregular nonlinear operator equation is either strongly convex or has other similar properties. Depending on the sourcewise representability conditions imposed on the solution, four such domains are detected, and their size is estimated. These results are used to substantiate the general scheme for the design of nonlocal two-level iterative processes for solving irregular equations.
@article{ZVMMF_2010_50_4_a4,
     author = {M. Yu. Kokurin},
     title = {On the convexity of the {Tikhonov} functional and iteratively regularized methods for solving irregular nonlinear operator equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {651--664},
     year = {2010},
     volume = {50},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a4/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - On the convexity of the Tikhonov functional and iteratively regularized methods for solving irregular nonlinear operator equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 651
EP  - 664
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a4/
LA  - ru
ID  - ZVMMF_2010_50_4_a4
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T On the convexity of the Tikhonov functional and iteratively regularized methods for solving irregular nonlinear operator equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 651-664
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a4/
%G ru
%F ZVMMF_2010_50_4_a4
M. Yu. Kokurin. On the convexity of the Tikhonov functional and iteratively regularized methods for solving irregular nonlinear operator equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 651-664. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a4/

[1] Bakushinskii A. B., Goncharskii A. V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Izd-vo MGU, M., 1989

[2] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002

[3] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Fizmatlit, M., 1995 | MR

[4] Ramlau R., “TIGRA — an iterative algorithm for regularizing nonlinear ill-posed problems”, Inverse Problems, 19:2 (2003), 433–467 | DOI | MR

[5] Ramlau R., “On the use of fixed point iterations for the regularization of nonlinear ill-posed problems”, J. Inverse and Ill-Posed Problems, 13:2 (2005), 175–200 | MR | Zbl

[6] Ramlau R., Teschke G., “Tikhonov replacement functionals for iteratively solving nonlinear equations”, Inverse Problems, 21:5 (2005), 1571–1592 | DOI | MR | Zbl

[7] Kaltenbacher B., “Toward global convergence for strongly nonlinear ill-posed problems via regularized multilevel approach”, Numer. Functional Anal. and Optimizat., 27:5–6 (2006), 637–665 | DOI | MR | Zbl

[8] Bakushinskii A. B., Kokurin M. Yu., Kozlov A. I., Stabiliziruyuschiesya metody gradientnogo tipa dlya resheniya neregulyarnykh nelineinykh operatornykh uravnenii, LKI, M., 2007

[9] Engl H. W., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer, Dordrecht, 2000

[10] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[11] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya neregulyarnykh uravnenii, LENAND, M., 2006

[12] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[13] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[14] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa teoriya i prilozheniya, In-t kompyuternykh issl., M.–Izhevsk, 2005 | MR

[15] Bakushinskii A. B., “Iterativno regulyarizovannyi gradientnyi metod resheniya nelineinykh neregulyarnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 805–811 | MR

[16] Bakushinsky A., Kokurin M., Iterative methods for approximate solution of inverse problems, Springer, Dordrecht, 2004 | MR | Zbl

[17] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods for nonlinear ill-posed problems, Walter de Gruyter, Berlin, 2008 | MR | Zbl

[18] Kokurin M. Yu., “Stable iteratively regularized gradient method for nonlinear irregular equations under large noise”, Inverse Problems, 22:1 (2006), 197–207 | DOI | MR | Zbl