First-order continuous regularization methods for generalized variational inequalities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 636-650 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For generalized variational inequalities in a Banach space with operators belonging to a certain class, first-order continuous regularization methods are constructed, and their strong convergence for perturbed data is proved.
@article{ZVMMF_2010_50_4_a3,
     author = {I. P. Ryazantseva},
     title = {First-order continuous regularization methods for generalized variational inequalities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {636--650},
     year = {2010},
     volume = {50},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a3/}
}
TY  - JOUR
AU  - I. P. Ryazantseva
TI  - First-order continuous regularization methods for generalized variational inequalities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 636
EP  - 650
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a3/
LA  - ru
ID  - ZVMMF_2010_50_4_a3
ER  - 
%0 Journal Article
%A I. P. Ryazantseva
%T First-order continuous regularization methods for generalized variational inequalities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 636-650
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a3/
%G ru
%F ZVMMF_2010_50_4_a3
I. P. Ryazantseva. First-order continuous regularization methods for generalized variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 636-650. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a3/

[1] Siddiqi A. H., Ansari Q. H., “General strongly nonlinear variational inequalities”, J. Math. Anal. and Appl., 166:2 (1992), 386–392 | DOI | MR | Zbl

[2] Konnov I. V., “Kombinipovannyi pelaksatsionnyi metod dlya obobschennykh vapiatsionnykh nepavenstv”, Izv. vuzov. Matematika, 2001, no. 12, 46–54 | MR | Zbl

[3] Nurminskii E. A., Shamrai N. B., “Metod lokalnykh vypuklykh mazhorant dlya resheniya variatsionno-podobnykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 47:3 (2007), 355–363 | MR | Zbl

[4] Konnov I. V., “Metod nelineinogo spuska dlya variatsionnogo neravenstva na nevypuklom mnozhestve”, Izv. vuzov. Matematika, 2009, no. 1, 66–75 | MR | Zbl

[5] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[6] Nedich A., “Regulyarizovannyi nepreryvnyi metod proektsii gradienta dlya zadach minimizatsii s netochnymi iskhodnymi dannymi”, Vestn. MGU. Ser. 15, 1994, no. 1, 3–10 | MR | Zbl

[7] Vasilev F. P., Nedich A., “Ob odnom vapiante pegulyarizovannogo metoda proektsii gradienta”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 511–519 | MR

[8] Ryazantseva I. P., “Regulyapizovannye metody pepvogo popyadka dlya monotonnykh vapiatsionnykh nepavenstv s opepatopom obobschennogo ppoektipovaniya”, Zh. vychisl. matem. i matem. fiz., 45:11 (2005), 1954–1962 | MR | Zbl

[9] Ryazantseva I. P., “Neppepyvnyi metod pegulyapizatsii pepvogo popyadka po A. S. Antipinu dlya monotonnykh vapiatsionnykh nepavenstv v banakhovom ppostranstve”, Zh. vychisl. matem. i matem. fiz., 46:7 (2006), 1184–1194 | MR

[10] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl

[11] Alber Ya., Ryazantseva I., Nonlinear ill-posed problems of monotone type, Springer, Dordrecht, 2006 | MR

[12] Ryazantseva I. P., Izbpannye glavy teopii opepatopov monotonnogo tipa, NGTU, Nizhnii Novgopod, 2008

[13] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[14] Ryazantseva I. P., Ustoichivye metody pesheniya nelineinykh monotonnykh nekoppektnykh zadach, Dis. ...dokt. fiz.-matem. nauk, NGU, Novosibipsk, 1996

[15] Ryazantseva I. P., “Neppepyvnyi metod pegulyapizatsii pepvogo popyadka dlya nelineinykh monotonnykh upavnenii”, Izv. vuzov. Matematika, 2007, no. 1, 45–53 | MR | Zbl

[16] Ryazantseva I. P., “Neppepyvnyi metod pegulyapizatsii pepvogo popyadka dlya monotonnykh vapiatsionnykh nepavenstv v banakhovom ppostpanstve”, Diffepents. up-niya, 39:1 (2003), 113–117 | MR | Zbl

[17] Alber Ya., Ryazantseva I., “On regularized evolution equations with operators of monotone type”, Funct. Different. Equat., 7:3–4 (2001), 177–187 | MR

[18] Albep Ya. I., Ryazantseva I. P., “Minimizatsiya vypuklykh funktsionalov”, Vses. konf. po ekstpemalnym zadacham i ikh prilozh., Tezisy dokl., Tallin, 1973, 18–19

[19] Alber Ya. I., “A new approach to investigation of evolution differential equations in Banach space”, Nonlinears Anal., Theory, Meth. and Appl., 23:9 (1994), 1115–1134 | DOI | MR | Zbl

[20] Antipin A. S., “Neppepyvnye i itepativnye ppotsessy s opepatopami ppoektipovaniya i tipa ppoektipovaniya”, Vopp. kibepnetiki. Vychisl. vopp. analiza bolshikh sistem, Nauchn. sovet po kompleksnoi ppobleme “Kibepnetika” AN SSSR, M., 1989, 5–43 | MR

[21] Badriev I. B., Zadvornov O. A., “Iteratsionnye metody resheniya variatsionnykh neravenstv vtorogo roda s obratno silno monotonnymi operatorami”, Izv. vuzov. Matematika, 2003, no. 1, 20–28 | MR | Zbl

[22] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[23] Browder F. E., Hess P., “Nonlinear mappings of monotone type in Banach spaces”, J. Funct. Anal., 11:3 (1972), 251–294 | DOI | MR | Zbl

[24] Ryazantseva I. P., Bubnova O. Yu., “Neppepyvnyi metod vtopogo popyadka dlya nelineinykh akkpetivnykh upavnenii v banakhovom ppostranstve”, Tp. Spednevolzhskogo matem. ob-va, 3–4:1 (2002), 327–334