Tikhonov solutions of approximate systems of linear algebraic equations under finite perturbations of their matrices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 618-635 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of a mathematical programming problem that arises in finding a stable (in the sense of Tikhonov) solution to a system of linear algebraic equations with an approximately given augmented coefficient matrix are examined. Conditions are obtained that determine whether this problem can be reduced to the minimization of a smoothing functional or to the minimal matrix correction of the underlying system of linear algebraic equations. A method for constructing (exact or approximately given) model systems of linear algebraic equations with known Tikhonov solutions is described. Sharp lower bounds are derived for the maximal error in the solution of an approximately given system of linear algebraic equations under finite perturbations of its coefficient matrix. Numerical examples are given.
@article{ZVMMF_2010_50_4_a2,
     author = {V. V. Volkov and V. I. Erokhin},
     title = {Tikhonov solutions of approximate systems of linear algebraic equations under finite perturbations of their matrices},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {618--635},
     year = {2010},
     volume = {50},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a2/}
}
TY  - JOUR
AU  - V. V. Volkov
AU  - V. I. Erokhin
TI  - Tikhonov solutions of approximate systems of linear algebraic equations under finite perturbations of their matrices
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 618
EP  - 635
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a2/
LA  - ru
ID  - ZVMMF_2010_50_4_a2
ER  - 
%0 Journal Article
%A V. V. Volkov
%A V. I. Erokhin
%T Tikhonov solutions of approximate systems of linear algebraic equations under finite perturbations of their matrices
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 618-635
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a2/
%G ru
%F ZVMMF_2010_50_4_a2
V. V. Volkov; V. I. Erokhin. Tikhonov solutions of approximate systems of linear algebraic equations under finite perturbations of their matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 618-635. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a2/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[2] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[3] Tikhonov A. N., “O normalnykh resheniyakh priblizhennykh sistem lineinykh algebraicheskikh uravnenii”, Dokl. AN SSSR, 254:3 (1980), 549–554 | MR | Zbl

[4] Tikhonov A. N., “O priblizhennykh sistemakh lineinykh algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 20:6 (1980), 1373–1383 | MR | Zbl

[5] Watson G. A., “Data fitting problems with bounded uncertainties in the data”, SIAM J. Matrix Anal. Appl., 22:4 (2001), 1274–1293 | DOI | MR | Zbl

[6] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990 | MR

[7] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[8] Louson Ch., Khenson R., Chislennoe reshenie zadach metoda naimenshikh kvadratov, Nauka, M., 1986 | MR

[9] Golub G. H., Van Loan C. F., “An analysis of the total least squares problem”, SIAM J. Numer. Anal., 17:3 (1980), 883–893 | DOI | MR | Zbl

[10] Van Huffel S., Vandewalle J., The total least squares problem: computational aspects and analysis, Frontiers in applied mathematics, 9, SIAM, Philadelphia, 1991 | MR | Zbl

[11] Gorelik V. A., Erokhin V. I., Optimalnaya matrichnaya korrektsiya nesovmestnykh sistem lineinykh algebraicheskikh uravnenii po minimumu evklidovoi normy, VTs RAN, M., 2004 | MR

[12] Vatolin A. A., “Approksimatsiya nesobstvennykh zadach lineinogo programmirovaniya po kriteriyu evklidovoi normy”, Zh. vychisl. matem. i matem. fiz., 24:12 (1984), 1907–1908 | MR | Zbl

[13] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983 | MR

[14] Gorelik V. A., “Matrichnaya korrektsiya zadachi lineinogo programmirovaniya s nesovmestnoi sistemoi ogranichenii”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1697–1705 | MR | Zbl

[15] Gorelik V. A., Erokhin V. I., Pechenkin R. V., Chislennye metody korrektsii nesobstvennykh zadach lineinogo programmirovaniya i strukturnykh sistem uravnenii, VTs RAN, M., 2006 | MR

[16] Gorelik V. A., Erokhin V. I., Pechenkin R. V., “Minimaksnaya matrichnaya korrektsiya nesovmestnykh sistem lineinykh algebraicheskikh uravnenii s blochnymi matritsami koeffitsientov”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 5, 52–62 | MR

[17] Erokhin V. I., “Matrichnaya korrektsiya dvoistvennoi pary nesobstvennykh zadach lineinogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 587–601 | MR | Zbl

[18] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[19] Marquardt D. W., “An algorithm for least-squares estimation of nonlinear parameters”, J. Soc. Indust. Appl. Math., 11:2 (1963), 431–441 | DOI | MR | Zbl

[20] Morrison D. D., “Methods for nonlinear least squares problems and convergence proofs”, Proc. Seminar Tracking Programs and Orbit Determination, Jet Propulsion Lab., Calif., Pasadena, 1960, 1–9

[21] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Fizmatgiz, M., 1990 | MR