@article{ZVMMF_2010_50_4_a13,
author = {D. P. Vetrov and D. A. Kropotov and A. A. Osokin},
title = {Automatic determination of the numbers of components in the {EM} algorithm for the restoration of a mixture of normal distributions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {770--783},
year = {2010},
volume = {50},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a13/}
}
TY - JOUR AU - D. P. Vetrov AU - D. A. Kropotov AU - A. A. Osokin TI - Automatic determination of the numbers of components in the EM algorithm for the restoration of a mixture of normal distributions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 770 EP - 783 VL - 50 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a13/ LA - ru ID - ZVMMF_2010_50_4_a13 ER -
%0 Journal Article %A D. P. Vetrov %A D. A. Kropotov %A A. A. Osokin %T Automatic determination of the numbers of components in the EM algorithm for the restoration of a mixture of normal distributions %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 770-783 %V 50 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a13/ %G ru %F ZVMMF_2010_50_4_a13
D. P. Vetrov; D. A. Kropotov; A. A. Osokin. Automatic determination of the numbers of components in the EM algorithm for the restoration of a mixture of normal distributions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 770-783. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a13/
[1] Dempster A. P., Laird N. M., Rubin D. B., “Maximum likelihood from incomplete data via the EM algorithm”, J. Roy. Stat. Soc. B, 39 (1977), 1–38 | MR | Zbl
[2] Bishop C. M., Pattern recognition and machine learning, Springer, New York, 2006 | MR
[3] Tipping M. E., “Sparse Bayesian learning and the relevance vector machine”, J. Mach. Learn. Res., 1 (2001), 211–244 | DOI | MR | Zbl
[4] MacKay D. J., “Bayesian interpolation”, Neural Comp., 4:3 (1992), 415–447 | DOI
[5] Kyrgyzov I. O., Kyrgyzov O. O., Maitre H., Campedel M., “Kernel MDL to determine the number of clusters”, Proc. Intern. Conf. Mach. Learn., Data Mining, Leipzig, 2007
[6] Xu L., Jordan M. I., “On convergence properties of the EM algorithm for Gaussian mixtures”, Neural Comp., 8 (1996), 129–151 | DOI
[7] Rissanen J., “Modeling by shortest data description”, Automatica, 14 (1978), 465–471 | DOI | Zbl
[8] Freund Y., Schapire R. E., “A decision-theoretic generalization of on-line learning and an application to boosting”, J. Comp. Syst. Sci., 55:1 (1997), 119–139 | DOI | MR | Zbl
[9] Akaike H. A., “A new look at the statistical model identification”, IEEE Trans. Autom. Contr., 19:6 (1974), 716–723 | DOI | MR | Zbl
[10] Hubert L., Arabie P., “Comparing partitions”, J. Clas., 2 (1985), 193–218 | DOI
[11] Vlassis N., Likas A., “A greedy EM algorithm for Gaussian mixture learning”, Neural Proc. Letters, 2000, 77–87
[12] Verbeek J. J., Vlassis N., Krose B., “Efficient greedy learning of Gaussian mixture models”, Neural Comp., 2003
[13] Kuncheva L. I., Vetrov D. P., “Evaluation of stability of $k$-means cluster ensembles with respect to random initialization”, IEEE Trans. Pattern Anal. Mach. Intell., 28:11 (2005), 1798–1808 | DOI
[14] Ryazanov V. V., “O sinteze klassifitsiruyuschikh algoritmov na konechnykh mnozhestvakh algoritmov klassifikatsii (taksonomii)”, Zh. vychisl. matem i matem. fiz., 22:2 (1982), 429–440 | MR | Zbl