Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 725-745
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotic behavior of the solution to the Cauchy problem for the Korteweg–de Vries–Burgers equation $u_t+(f(u))_x+au_{xxx}-bu_{xx}=0$ as $t\to\infty$ is analyzed. Sufficient conditions for the existence and local stability of a traveling-wave solution known in the case of $f(u)=u^2$ are extended to the case of an arbitrary sufficiently smooth convex function $f(u)$.
@article{ZVMMF_2010_50_4_a10,
author = {A. V. Kazeǐkina},
title = {Stability of a traveling-wave solution of the {Cauchy} problem for the {Korteweg{\textendash}de} {Vries{\textendash}Burgers} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {725--745},
publisher = {mathdoc},
volume = {50},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a10/}
}
TY - JOUR AU - A. V. Kazeǐkina TI - Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 725 EP - 745 VL - 50 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a10/ LA - ru ID - ZVMMF_2010_50_4_a10 ER -
%0 Journal Article %A A. V. Kazeǐkina %T Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 725-745 %V 50 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a10/ %G ru %F ZVMMF_2010_50_4_a10
A. V. Kazeǐkina. Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 725-745. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a10/