@article{ZVMMF_2010_50_4_a10,
author = {A. V. Kazeǐkina},
title = {Stability of a traveling-wave solution of the {Cauchy} problem for the {Korteweg{\textendash}de} {Vries{\textendash}Burgers} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {725--745},
year = {2010},
volume = {50},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a10/}
}
TY - JOUR AU - A. V. Kazeǐkina TI - Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 725 EP - 745 VL - 50 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a10/ LA - ru ID - ZVMMF_2010_50_4_a10 ER -
%0 Journal Article %A A. V. Kazeǐkina %T Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 725-745 %V 50 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a10/ %G ru %F ZVMMF_2010_50_4_a10
A. V. Kazeǐkina. Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 725-745. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a10/
[1] Naumkin P. I., Shishmarev I. A., “Zadachi o raspade stupenki dlya uravneniya Kortevega–de Vriza–Byurgersa”, Funkts. analiz i ego prilozh., 25:1 (1991), 21–32 | MR | Zbl
[2] Polterovich V. M., Khenkin G. M., “Matematicheskii analiz ekonomicheskikh modelei. Evolyutsionnaya model vzaimodeistviya protsessov sozdaniya i zaimstvovaniya tekhnologii”, Ekonomika i matem. metody, 24:6 (1988), 1071–1083 | MR
[3] Hopf E., “The partial differential equation $u_t + uu_x =\mu u_{xx}$”, Communs Pure and Appl. Math., 3:3 (1950), 201–230 | DOI | MR | Zbl
[4] Ilin A. M., Oleinik O. A., “Asimptoticheskoe povedenie reshenii zadachi Koshi dlya nekotorykh kvazilineinykh uravnenii pri bolshikh znacheniyakh vremeni”, Matem. sb., 51(93):2 (1960), 191–216 | MR
[5] Weinberger H. F., “Long-time behavior for regularized scalar conservation law in absence of genuine nonlinearity”, Ann. Inst. H. Poincare Anal. Non Lineaire, 7 (1990), 407–425 | MR | Zbl
[6] Henkin G. M., Polterovich V. M., “A difference-differencial analogue of the Burgers equation: Stability of the two-wave behavior”, J. Nonlinear Sci., 4 (1994), 497–517 | DOI | MR | Zbl
[7] Henkin G. M., Polterovich V. M., “A difference-differential analogue of the Burgers equation and some models of economic development”, Discrete Continuous Dynamic Systems, 5:4 (1999), 697–728 | DOI | MR | Zbl
[8] Henkin G. M., Shananin A. A., “Asymptotic behavior of solutions of the Cauchy problem for Burgers type equations”, J. Math. Pures and Appl., 83 (2004), 1457–1500 | MR | Zbl
[9] Henkin G. M., Shananin A. A., Tumanov A. E., “Estimates for solution of Burgers type equations and some applications”, J. Math. Pures and Appl., 84 (2005), 717–752 | DOI | MR | Zbl
[10] Henkin G. M., “Asymptotic structure for solutions of the Cauchy problem for Burgers type equations”, JFPTA, 1:2 (2007), 239–291 | MR | Zbl
[11] Naumkin P. I., Shishmarev I. A., “O raspade stupenki dlya uravneniya Kortevega–de Vriza–Byurgersa”, Funkts. analiz i ego prilozh., 26(2) (1991), 88–93 | MR
[12] Duan R., Zhao H., “Global srability of strong rarefaction waves for the generalized $\mathrm{KdV}$-Burgers equation”, Nonlinear Anal., 66 (2007), 1100–1117 | DOI | MR | Zbl
[13] Kolmogorov A. N., Petrovskii I. G., Piskunov N. S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. MGU. Ser. matem. i mekhan., 1:6 (1937), 1–26 | MR
[14] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi matem. nauk, 51:6 (1996), 89–124 | MR | Zbl