Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 725-745 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behavior of the solution to the Cauchy problem for the Korteweg–de Vries–Burgers equation $u_t+(f(u))_x+au_{xxx}-bu_{xx}=0$ as $t\to\infty$ is analyzed. Sufficient conditions for the existence and local stability of a traveling-wave solution known in the case of $f(u)=u^2$ are extended to the case of an arbitrary sufficiently smooth convex function $f(u)$.
@article{ZVMMF_2010_50_4_a10,
     author = {A. V. Kazeǐkina},
     title = {Stability of a traveling-wave solution of the {Cauchy} problem for the {Korteweg{\textendash}de} {Vries{\textendash}Burgers} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {725--745},
     year = {2010},
     volume = {50},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a10/}
}
TY  - JOUR
AU  - A. V. Kazeǐkina
TI  - Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 725
EP  - 745
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a10/
LA  - ru
ID  - ZVMMF_2010_50_4_a10
ER  - 
%0 Journal Article
%A A. V. Kazeǐkina
%T Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 725-745
%V 50
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a10/
%G ru
%F ZVMMF_2010_50_4_a10
A. V. Kazeǐkina. Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 4, pp. 725-745. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_4_a10/

[1] Naumkin P. I., Shishmarev I. A., “Zadachi o raspade stupenki dlya uravneniya Kortevega–de Vriza–Byurgersa”, Funkts. analiz i ego prilozh., 25:1 (1991), 21–32 | MR | Zbl

[2] Polterovich V. M., Khenkin G. M., “Matematicheskii analiz ekonomicheskikh modelei. Evolyutsionnaya model vzaimodeistviya protsessov sozdaniya i zaimstvovaniya tekhnologii”, Ekonomika i matem. metody, 24:6 (1988), 1071–1083 | MR

[3] Hopf E., “The partial differential equation $u_t + uu_x =\mu u_{xx}$”, Communs Pure and Appl. Math., 3:3 (1950), 201–230 | DOI | MR | Zbl

[4] Ilin A. M., Oleinik O. A., “Asimptoticheskoe povedenie reshenii zadachi Koshi dlya nekotorykh kvazilineinykh uravnenii pri bolshikh znacheniyakh vremeni”, Matem. sb., 51(93):2 (1960), 191–216 | MR

[5] Weinberger H. F., “Long-time behavior for regularized scalar conservation law in absence of genuine nonlinearity”, Ann. Inst. H. Poincare Anal. Non Lineaire, 7 (1990), 407–425 | MR | Zbl

[6] Henkin G. M., Polterovich V. M., “A difference-differencial analogue of the Burgers equation: Stability of the two-wave behavior”, J. Nonlinear Sci., 4 (1994), 497–517 | DOI | MR | Zbl

[7] Henkin G. M., Polterovich V. M., “A difference-differential analogue of the Burgers equation and some models of economic development”, Discrete Continuous Dynamic Systems, 5:4 (1999), 697–728 | DOI | MR | Zbl

[8] Henkin G. M., Shananin A. A., “Asymptotic behavior of solutions of the Cauchy problem for Burgers type equations”, J. Math. Pures and Appl., 83 (2004), 1457–1500 | MR | Zbl

[9] Henkin G. M., Shananin A. A., Tumanov A. E., “Estimates for solution of Burgers type equations and some applications”, J. Math. Pures and Appl., 84 (2005), 717–752 | DOI | MR | Zbl

[10] Henkin G. M., “Asymptotic structure for solutions of the Cauchy problem for Burgers type equations”, JFPTA, 1:2 (2007), 239–291 | MR | Zbl

[11] Naumkin P. I., Shishmarev I. A., “O raspade stupenki dlya uravneniya Kortevega–de Vriza–Byurgersa”, Funkts. analiz i ego prilozh., 26(2) (1991), 88–93 | MR

[12] Duan R., Zhao H., “Global srability of strong rarefaction waves for the generalized $\mathrm{KdV}$-Burgers equation”, Nonlinear Anal., 66 (2007), 1100–1117 | DOI | MR | Zbl

[13] Kolmogorov A. N., Petrovskii I. G., Piskunov N. S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. MGU. Ser. matem. i mekhan., 1:6 (1937), 1–26 | MR

[14] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi matem. nauk, 51:6 (1996), 89–124 | MR | Zbl