@article{ZVMMF_2010_50_3_a9,
author = {A. V. Volkov},
title = {Application of the multigrid approach to the solution of {3D} {Navier{\textendash}Stokes} equations on hexahedral grids by the {Galerkin} method with discontinuous basis functions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {517--531},
year = {2010},
volume = {50},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a9/}
}
TY - JOUR AU - A. V. Volkov TI - Application of the multigrid approach to the solution of 3D Navier–Stokes equations on hexahedral grids by the Galerkin method with discontinuous basis functions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 517 EP - 531 VL - 50 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a9/ LA - ru ID - ZVMMF_2010_50_3_a9 ER -
%0 Journal Article %A A. V. Volkov %T Application of the multigrid approach to the solution of 3D Navier–Stokes equations on hexahedral grids by the Galerkin method with discontinuous basis functions %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 517-531 %V 50 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a9/ %G ru %F ZVMMF_2010_50_3_a9
A. V. Volkov. Application of the multigrid approach to the solution of 3D Navier–Stokes equations on hexahedral grids by the Galerkin method with discontinuous basis functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 517-531. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a9/
[1] Morrison J., Hemsch M., “Statistical analysis of CFD solutions from the 3rd”, AIAA Drag Prediction Workshop, 3rd AIAA APA Drag Prediction Workshop, 2006 http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/presentations/index.html
[2] Volkov A. V., Lyapunov S. V., “Issledovanie effektivnosti ispolzovaniya chislennykh skhem vysokogo poryadka tochnosti dlya resheniya uravnenii Nave–Stoksa i Reinoldsa na nestrukturirovannykh adaptivnykh setkakh”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1894–1907 | MR
[3] Cockburn B., Karniadakis G., Shu C.-W., “Discontinuous Galerkin methods: Theory, computation and applications”, Lect. Notes Comput. Sci., Springer, New York, 1999, 69–224 | MR | Zbl
[4] Petrovskaya N. B., Wolkov A. V., “The issues of the solution approximation in higher-order schemes on distorted grids”, Internat. J. Comput. Meth., 4:2 (2007) | MR
[5] Bassi F., Crivellini A., Di Pietro D. A., Rebay S., “A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows”, Proc. ECCOMAS CFD 2006 Conf. (Sept. 2006)
[6] Luo H., Baum J. D., Lohner R., A fast, $p$-multigrid discontinuous Galerkin method for compressible flows at all speeds, AIAA 2006-110
[7] Wang Z. J., “High-order methods for the Euler and Navier–Stokes equations on unstructured grids”, Progress in Aerospace Sci., 43 (2007), 1–41 | DOI
[8] Fedorenko R. P., “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:5 (1961), 922–927 | MR | Zbl
[9] Rönquist E. V., Patera A. T., “Spectral element multigrid. I: Formulation and numerical results”, J. Scient. Comput., 2:4 (1987) | MR
[10] Helenbrook B. T., Mavriplis D., Atkins H. L., Analysis of $p$-multigrid for continuous and discontinuous finite element discretizations, AIAA Paper 2003-3989, 2003 | Zbl
[11] Zhukov V. T., Feodoritova O. B., Yang D. P., “Iteratsionnye algoritmy dlya skhem konechnykh elementov vysokogo poryadka”, Matem. modelirovanie, 16:7 (2004), 117–128 | Zbl
[12] Wang Li, Mavriplis D. J., Implicit solution of the unsteady Euler equations for high-order accurate discontinuous Galerkin discretizations, AIAA 2006-109 | MR
[13] Roe P. L., “Approximate Riemann problem solvers, parameter vectors, and difference schemes”, J. Comput. Phys., 43:2 (1981), 357–372 | DOI | MR | Zbl
[14] Atkins H. L., Shu C. W., “Quadrature free implementation of discontinuous Galerkin method for hyperbolic equations”, AIAA Journal, 36:5 (1998) | DOI
[15] Mavriplis D. J., Venkatakrishnan V., “Agglomeration multigrid for two dimensional viscous flows”, Comput. and Fluids, 24:5 (1995), 553–570 | DOI | Zbl
[16] www.numeca.be
[17] Brandt A., “Multilevel adaptive computations in fluid dynamics”, AIAA Journal, 18:10 (1980) | DOI | MR | Zbl
[18] Barth T. J., A posteriori estimation and mesh adaptivity for finite volume and finite element method, Lect. Notes in Comput. Sci. and Engng. (LNCSE), 41, 2004
[19] Enayet M., Gibson M., Taylor A., Yianneskis M., Laser Doppler measurements of laminar and turbulent flow in a pipe bend, NASA Contract Rept. CR-3551, 1982
[20] Müller U. R., Schulze B., Henke H., “Computation of transonic steady and unsteady flow about LANN wing. Validation of CFD codes and assessment of turbulence models”, ECARP Rept. 58, Vieweg, 1996, 479–500