Application of the multigrid approach to the solution of 3D Navier–Stokes equations on hexahedral grids by the Galerkin method with discontinuous basis functions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 517-531 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Galerkin method with discontinuous basis functions is adapted for solving the Euler and Navier–Stokes equations on unstructured hexahedral grids. A hybrid multigrid algorithm involving the finite element and grid stages is used as an iterative solution method. Numerical results of calculating the sphere inviscid flow, viscous flow in a bent pipe, and turbulent flow past a wing are presented. The numerical results and the computational cost are compared with those obtained using the finite volume method.
@article{ZVMMF_2010_50_3_a9,
     author = {A. V. Volkov},
     title = {Application of the multigrid approach to the solution of {3D} {Navier{\textendash}Stokes} equations on hexahedral grids by the {Galerkin} method with discontinuous basis functions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {517--531},
     year = {2010},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a9/}
}
TY  - JOUR
AU  - A. V. Volkov
TI  - Application of the multigrid approach to the solution of 3D Navier–Stokes equations on hexahedral grids by the Galerkin method with discontinuous basis functions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 517
EP  - 531
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a9/
LA  - ru
ID  - ZVMMF_2010_50_3_a9
ER  - 
%0 Journal Article
%A A. V. Volkov
%T Application of the multigrid approach to the solution of 3D Navier–Stokes equations on hexahedral grids by the Galerkin method with discontinuous basis functions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 517-531
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a9/
%G ru
%F ZVMMF_2010_50_3_a9
A. V. Volkov. Application of the multigrid approach to the solution of 3D Navier–Stokes equations on hexahedral grids by the Galerkin method with discontinuous basis functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 517-531. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a9/

[1] Morrison J., Hemsch M., “Statistical analysis of CFD solutions from the 3rd”, AIAA Drag Prediction Workshop, 3rd AIAA APA Drag Prediction Workshop, 2006 http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/presentations/index.html

[2] Volkov A. V., Lyapunov S. V., “Issledovanie effektivnosti ispolzovaniya chislennykh skhem vysokogo poryadka tochnosti dlya resheniya uravnenii Nave–Stoksa i Reinoldsa na nestrukturirovannykh adaptivnykh setkakh”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1894–1907 | MR

[3] Cockburn B., Karniadakis G., Shu C.-W., “Discontinuous Galerkin methods: Theory, computation and applications”, Lect. Notes Comput. Sci., Springer, New York, 1999, 69–224 | MR | Zbl

[4] Petrovskaya N. B., Wolkov A. V., “The issues of the solution approximation in higher-order schemes on distorted grids”, Internat. J. Comput. Meth., 4:2 (2007) | MR

[5] Bassi F., Crivellini A., Di Pietro D. A., Rebay S., “A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows”, Proc. ECCOMAS CFD 2006 Conf. (Sept. 2006)

[6] Luo H., Baum J. D., Lohner R., A fast, $p$-multigrid discontinuous Galerkin method for compressible flows at all speeds, AIAA 2006-110

[7] Wang Z. J., “High-order methods for the Euler and Navier–Stokes equations on unstructured grids”, Progress in Aerospace Sci., 43 (2007), 1–41 | DOI

[8] Fedorenko R. P., “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:5 (1961), 922–927 | MR | Zbl

[9] Rönquist E. V., Patera A. T., “Spectral element multigrid. I: Formulation and numerical results”, J. Scient. Comput., 2:4 (1987) | MR

[10] Helenbrook B. T., Mavriplis D., Atkins H. L., Analysis of $p$-multigrid for continuous and discontinuous finite element discretizations, AIAA Paper 2003-3989, 2003 | Zbl

[11] Zhukov V. T., Feodoritova O. B., Yang D. P., “Iteratsionnye algoritmy dlya skhem konechnykh elementov vysokogo poryadka”, Matem. modelirovanie, 16:7 (2004), 117–128 | Zbl

[12] Wang Li, Mavriplis D. J., Implicit solution of the unsteady Euler equations for high-order accurate discontinuous Galerkin discretizations, AIAA 2006-109 | MR

[13] Roe P. L., “Approximate Riemann problem solvers, parameter vectors, and difference schemes”, J. Comput. Phys., 43:2 (1981), 357–372 | DOI | MR | Zbl

[14] Atkins H. L., Shu C. W., “Quadrature free implementation of discontinuous Galerkin method for hyperbolic equations”, AIAA Journal, 36:5 (1998) | DOI

[15] Mavriplis D. J., Venkatakrishnan V., “Agglomeration multigrid for two dimensional viscous flows”, Comput. and Fluids, 24:5 (1995), 553–570 | DOI | Zbl

[16] www.numeca.be

[17] Brandt A., “Multilevel adaptive computations in fluid dynamics”, AIAA Journal, 18:10 (1980) | DOI | MR | Zbl

[18] Barth T. J., A posteriori estimation and mesh adaptivity for finite volume and finite element method, Lect. Notes in Comput. Sci. and Engng. (LNCSE), 41, 2004

[19] Enayet M., Gibson M., Taylor A., Yianneskis M., Laser Doppler measurements of laminar and turbulent flow in a pipe bend, NASA Contract Rept. CR-3551, 1982

[20] Müller U. R., Schulze B., Henke H., “Computation of transonic steady and unsteady flow about LANN wing. Validation of CFD codes and assessment of turbulence models”, ECARP Rept. 58, Vieweg, 1996, 479–500