Numerical solution of a three-dimensional stationary problem of the diffraction of elastic waves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 486-502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three-dimensional problems concerning the propagation of stationary elastic oscillations in media with three-dimensional inclusions are solved numerically. By applying potential theory methods, the original problem is stated as a system of two singular vector integral equations for the unknown internal and external densities of auxiliary sources of waves. An approximate solution of the original problem is obtained by approximating the integral equations by a system of linear algebraic equations, which is then solved numerically. The underlying algorithm has the property of self-regularization, due to which a numerical solution is found without using cumbersome regularizing algorithms. Results of test computations and numerical experiments are presented that characterize the capabilities of this approach as applied to the diffraction of elastic waves in three-dimensional settings.
@article{ZVMMF_2010_50_3_a7,
     author = {N. E. Ershov and L. V. Illarionova},
     title = {Numerical solution of a three-dimensional stationary problem of the diffraction of elastic waves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {486--502},
     year = {2010},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a7/}
}
TY  - JOUR
AU  - N. E. Ershov
AU  - L. V. Illarionova
TI  - Numerical solution of a three-dimensional stationary problem of the diffraction of elastic waves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 486
EP  - 502
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a7/
LA  - ru
ID  - ZVMMF_2010_50_3_a7
ER  - 
%0 Journal Article
%A N. E. Ershov
%A L. V. Illarionova
%T Numerical solution of a three-dimensional stationary problem of the diffraction of elastic waves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 486-502
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a7/
%G ru
%F ZVMMF_2010_50_3_a7
N. E. Ershov; L. V. Illarionova. Numerical solution of a three-dimensional stationary problem of the diffraction of elastic waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 486-502. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a7/

[1] Gurvich I. I., Nomokonov V. P. (red.), Seismorazvedka: Spravochnik geofizika, Nedra, M., 1981

[2] Spravochnik po geofizike, Nauka, M., 1965

[3] Galishnikova T. N., Ilinskii A. S., Chislennye metody v zadachakh difraktsii, Izd-vo MGU, M., 1987 | MR | Zbl

[4] Selezov I. T., Krivonos Yu. G., Yakovlev V. V., Rasseyanie voln lokalnymi neodnorodnostyami v sploshnykh sredakh, Nauk. dumka, Kiev, 1985

[5] Ivlev D. D., Ershov L. V., Metod vozmuschenii v teorii uprugoplasticheskogo tela, Nauka, M., 1978

[6] Vorobev F. A., “Rasseyanie poperechnoi impulsnoi uprugoi volny na melkomasshtabnom sfericheskom vklyuchenii”, Geologiya i geofiz., 1989, no. 5, 136–139

[7] Kleschev A. A., “Trekhmernye i dvumernye osesimmetrichnye kharakteristiki uprugikh sferoidalnykh rasseivatelei”, Akustich. zhurnal, 32:2 (1986), 268–270

[8] Ershov N. F., Shakhverdi T. G., Metod konechnykh elementov v zadachakh gidrodinamiki i gidrouprugosti, Sudostroenie, L., 1984

[9] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[10] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[11] Kupradze V. D., Gegeliya T. G., Basheleishvili M. I., Burchuladze T. V., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR

[12] Parton V. Z., Perlin P. I., Integralnye uravneniya teorii uprugosti, Nauka, M., 1977 | MR

[13] Voronin V. V., “Chislennoe reshenie dvumernoi zadachi difraktsii uprugoi volny na uprugom tele metodom potentsialov”, Uslovno-korrektnye zadachi matem. fiz. v interpretatsii geofiz. nablyudenii, Izd-vo VTs SO RAN SSSR, Novosibirsk, 1978, 5–22

[14] Ershov N. E., Smagin S. I., “Reshenie prostranstvennykh zadach akustiki i uprugosti metodom potentsialov”, Differents. ur-niya, 29:9 (1993), 1517–1525 | MR | Zbl

[15] Ershov N. E., Smagin S. I., “Priblizhennoe reshenie prostranstvennykh zadach akustiki i uprugosti metodom potentsialov”, Matem. modeli, metody i prilozh., Izd-vo KhGPU, Khabarovsk, 2002, 45–115

[16] Oben Zh.-P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977 | MR

[17] Smagin S. I., “Chislennoe reshenie integralnogo uravneniya I roda so slaboi osobennostyu na zamknutoi poverkhnosti”, Dokl. AN SSSR, 303:5 (1988), 1048–1051

[18] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Gosfizmatgiz, M., 1963

[19] Ershov N. E., Illarionova L. V., “Modelirovanie protsessov rasprostraneniya i difraktsii uprugikh statsionarnykh voln na trekhmernom vklyuchenii”, Vychisl. i inform. tekhnol. v nauke, tekhnike i obrazovanii, Sb. dokl. mezhdunar. konf. (Pavlodar, Kazakhstan, 20–22 sent. 2006 g.), Izd-vo PGU, 2006, 466–476

[20] Blokhina L. V., Ershov N. E., “Chislennoe reshenie integralnykh uravnenii prostranstvennoi zadachi rasprostraneniya i difraktsii akusticheskikh voln”, Sb. dokl. mezhdunar. konf. po vychisl. matem. (Novosibirsk, 2004), IM SO RAN, Novosibirsk, 2004, 407–410

[21] Saad Y., Schultz M., “GMRES: A generalized minimal residual algorithm for solvating nonsymmetric linear systems”, SIAM. J. Sci. Statist. Comput., 7 (1986), 856–869 | DOI | MR | Zbl