Asymptotic behavior of the solution of the Neumann problem with a delta-like boundary function
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 479-485 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A uniform asymptotic expansion is found for the integral $\iint_S\nabla^2 u\, dx\,dy$, where $u$ is the solution of the Neumann problem with a delta-function-like derivative on the boundary. A physics application of the result is discussed.
@article{ZVMMF_2010_50_3_a6,
     author = {A. A. Ershov},
     title = {Asymptotic behavior of the solution of the {Neumann} problem with a delta-like boundary function},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {479--485},
     year = {2010},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a6/}
}
TY  - JOUR
AU  - A. A. Ershov
TI  - Asymptotic behavior of the solution of the Neumann problem with a delta-like boundary function
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 479
EP  - 485
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a6/
LA  - ru
ID  - ZVMMF_2010_50_3_a6
ER  - 
%0 Journal Article
%A A. A. Ershov
%T Asymptotic behavior of the solution of the Neumann problem with a delta-like boundary function
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 479-485
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a6/
%G ru
%F ZVMMF_2010_50_3_a6
A. A. Ershov. Asymptotic behavior of the solution of the Neumann problem with a delta-like boundary function. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 479-485. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a6/

[1] Dmitriev A. V., Nauchnye osnovy razrabotki sposobov snizheniya udelnogo elektricheskogo soprotivleniya grafitirovannykh elektrodov, Izd-vo ChGPU, Chelyabinsk, 2005

[2] Polyakov N. N., “Ob izmerenii koeffitsienta Kholla i elektroprovodimosti anizotropnykh provodnikov”, Zavodskaya laboratoriya, 1989, no. 3, 20–22

[3] Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2008

[4] Fedoryuk M. V., Asimptotika, integraly i ryady, Nauka, M., 1987 | MR

[5] Beitman G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1974