Asymptotic behavior of the solution of the Neumann problem with a delta-like boundary function
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 479-485
Cet article a éte moissonné depuis la source Math-Net.Ru
A uniform asymptotic expansion is found for the integral $\iint_S\nabla^2 u\, dx\,dy$, where $u$ is the solution of the Neumann problem with a delta-function-like derivative on the boundary. A physics application of the result is discussed.
@article{ZVMMF_2010_50_3_a6,
author = {A. A. Ershov},
title = {Asymptotic behavior of the solution of the {Neumann} problem with a delta-like boundary function},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {479--485},
year = {2010},
volume = {50},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a6/}
}
TY - JOUR AU - A. A. Ershov TI - Asymptotic behavior of the solution of the Neumann problem with a delta-like boundary function JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 479 EP - 485 VL - 50 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a6/ LA - ru ID - ZVMMF_2010_50_3_a6 ER -
%0 Journal Article %A A. A. Ershov %T Asymptotic behavior of the solution of the Neumann problem with a delta-like boundary function %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 479-485 %V 50 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a6/ %G ru %F ZVMMF_2010_50_3_a6
A. A. Ershov. Asymptotic behavior of the solution of the Neumann problem with a delta-like boundary function. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 479-485. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a6/
[1] Dmitriev A. V., Nauchnye osnovy razrabotki sposobov snizheniya udelnogo elektricheskogo soprotivleniya grafitirovannykh elektrodov, Izd-vo ChGPU, Chelyabinsk, 2005
[2] Polyakov N. N., “Ob izmerenii koeffitsienta Kholla i elektroprovodimosti anizotropnykh provodnikov”, Zavodskaya laboratoriya, 1989, no. 3, 20–22
[3] Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2008
[4] Fedoryuk M. V., Asimptotika, integraly i ryady, Nauka, M., 1987 | MR
[5] Beitman G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1974