A Richardson scheme of an increased order of accuracy for a semilinear singularly perturbed elliptic convection-diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 458-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet problem on a vertical strip is examined for a singularly perturbed semilinear elliptic convection-diffusion equation. For this problem, the basic nonlinear difference scheme based on the classical approximations on piecewise uniform grids condensing in the vicinity of boundary layers converges $\varepsilon$-uniformly with an order at most almost one. The Richardson technique is used to construct a nonlinear scheme that converges $\varepsilon$-uniformly with an improved order, namely, at the rate $O(N_1^{-2}\ln_1^2N+N_2^{-2})$, where $N_1+1$ and $N_2+1$ are the number of grid nodes along the $x_1$-axis and per unit interval of the $x_2$-axis, respectively. This nonlinear basic scheme underlies the linearized iterative scheme, in which the nonlinear term is calculated using the values of the sought function found at the preceding iteration step. The latter scheme is used to construct a linearized iterative Richardson scheme converging $\varepsilon$-uniformly with an improved order. Both the basic and improved iterative schemes converge $\varepsilon$-uniformly at the rate of a geometric progression as the number of iteration steps grows. The upper and lower solutions to the iterative Richardson schemes are used as indicators, which makes it possible to determine the iteration step at which the same $\varepsilon$-uniform accuracy is attained as that of the non-iterative nonlinear Richardson scheme. It is shown that no Richardson schemes exist for the convection-diffusion boundary value problem converging $\varepsilon$-uniformly with an order greater than two. Principles are discussed on which the construction of schemes of order greater than two can be based.
@article{ZVMMF_2010_50_3_a5,
     author = {G. I. Shishkin and L. P. Shishkina},
     title = {A {Richardson} scheme of an increased order of accuracy for a semilinear singularly perturbed elliptic convection-diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {458--478},
     year = {2010},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a5/}
}
TY  - JOUR
AU  - G. I. Shishkin
AU  - L. P. Shishkina
TI  - A Richardson scheme of an increased order of accuracy for a semilinear singularly perturbed elliptic convection-diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 458
EP  - 478
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a5/
LA  - ru
ID  - ZVMMF_2010_50_3_a5
ER  - 
%0 Journal Article
%A G. I. Shishkin
%A L. P. Shishkina
%T A Richardson scheme of an increased order of accuracy for a semilinear singularly perturbed elliptic convection-diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 458-478
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a5/
%G ru
%F ZVMMF_2010_50_3_a5
G. I. Shishkin; L. P. Shishkina. A Richardson scheme of an increased order of accuracy for a semilinear singularly perturbed elliptic convection-diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 458-478. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a5/

[1] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[2] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248 | MR | Zbl

[3] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[4] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scient., Singapore, 1996 | MR

[5] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems, 2nd ed., Springer, Berlin, 2008 | MR

[6] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, Chapman Hall/CRC, Boca Raton, 2000 | MR | Zbl

[7] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Monographs Surveys in Pure Appl. Math., 140, Chapman and Hall/CRC, Boca Raton, 2009 | MR | Zbl

[8] Böhmer K., Stetter H. (Eds.), Defect correction methods. Theory and applications, Suppl. 5, Springer, Vienna, 1984 | MR

[9] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[10] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[11] Shishkin G. I., “Povyshenie tochnosti priblizhennykh reshenii korrektsiei nevyazki dlya singulyarno vozmuschennykh uravnenii s konvektivnymi chlenami”, Izv. vuzov. Matematika, 1999, no. 5, 81–93 | MR | Zbl

[12] Hemker P. W., Shishkin G. I., Shishkina L. P., “$\varepsilon$-uniform schemes with high-order time-accuracy for parabolic singular perturbation problems”, IMA J. Numer. Analys., 20:1 (2000), 99–121 | DOI | MR | Zbl

[13] Hemker P. W., Shishkin G. I., Shishkina L. P., “Novel defect-correction high-order, in space and time, accurate schemes for parabolic singularly perturbed convection-diffusion problems”, Comput. Meth. Appl. Math., 3:3 (2003), 387–404 | MR | Zbl

[14] Shishkin G. I., “Povyshenie tochnosti reshenii raznostnykh skhem dlya parabolicheskikh uravnenii s malym parametrom pri starshei proizvodnoi”, Zh. vychisl. matem. i matem. fiz., 24:6 (1984), 864–875 | MR | Zbl

[15] Shishkin G. I., “Setochnye approksimatsii dlya singulyarno vozmuschennykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 1989–2001 | MR | Zbl

[16] Hemker P. W., Shishkin G. I., Shishkina L. P., “High-order accurate decomposition of Richardson's method for a singularly perturbed elliptic reaction-diffusion equation”, Comput. Math. Math. Phys., 44:2 (2004), 309–316 | MR | Zbl

[17] Shishkin G. I., “Robust novel high-order accurate numerical methods for singularly perturbed convection-diffusion problems”, Math. Model. Analys., 10:4 (2005), 393–412 | MR | Zbl

[18] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[19] Shishkina L. P., “The Richardson method of high-order accuracy in $t$ for a semilinear singularly perturbed parabolic reaction-diffusion equation on a strip”, Comput. Math., Proc. Internat. Conf. ICCM'2004 (Novosibirsk, 2004), v. II, ICM Publisher, Novosibirsk, 2004, 927–931

[20] Shishkina L. P., Shishkin G. I., “The discrete Richardson method for semilinear parabolic singularly perturbed convection-diffusion equations”, Math. Modelling and Analysis, Proc. 10th Internat. Conf. MMA'2005 (Trakai, Lithuania, 2005), Technika, Vilnius, 2005, 259–264 | MR

[21] Shishkin G. I., Shishkina L. P., “Metod Richardsona vysokogo poryadka tochnosti dlya kvazilineinogo singulyarno vozmuschennogo ellipticheskogo uravneniya reaktsii-diffuzii”, Differents. ur-niya, 41:7 (2005), 980–989 | MR | Zbl

[22] Shishkin G. I., “Grid approximation of singularly perturbed boundary value problem for the quasi-linear elliptic equation degenerating into the first-order equation”, Soviet J. Numer. Analys. Math. Modelling, 6:1 (1991), 61–81 | DOI | MR | Zbl

[23] Shishkin G. I., “Raznostnaya approksimatsiya singulyarno vozmuschennoi kraevoi zadachi dlya kvazilineinykh ellipticheskikh uravnenii, vyrozhdayuschikhsya v uravnenie pervogo poryadka”, Zh. vychisl. matem. i matem. fiz., 32:4 (1992), 550–566 | MR | Zbl

[24] Shishkin G. I., “Grid approximation of singularly perturbed boundary value problem for quasi-linear parabolic equations in case of complete degeneracy in spatial variables”, Soviet J. Numer. Analys. Math. Modelling, 6:3 (1991), 243–261 | DOI | MR | Zbl

[25] Protter M. H., Weinberger H. F., Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, N.J., 1967 | MR | Zbl

[26] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[27] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR