@article{ZVMMF_2010_50_3_a4,
author = {P. N. Vabishchevich},
title = {Regularized additive operator-difference schemes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {449--457},
year = {2010},
volume = {50},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a4/}
}
P. N. Vabishchevich. Regularized additive operator-difference schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 449-457. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a4/
[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[2] Samarskii A. A., “O regulyarizatsii raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 7:1 (1967), 62–93 | MR
[3] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl
[4] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[5] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 1999 | MR
[6] Samarskii A. A., Vabischevich P. N., “Regulyarizovannye additivnye skhemy polnoi approksimatsii”, Dokl. RAN, 358:4 (1998), 461–464 | MR
[7] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1989
[8] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial URSS, M., 2004
[9] Samarskii A. A., Matus P. P., Vabishchevich P. N., Difference schemes with operator factors, Hardbound, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl
[10] Peaceman D. W., Rachford H. H., “The numerical solution of parabolic and elliptic differential equations”, J. Soc. Industr. Appl. Math., 3:1 (1955), 28–41 | DOI | MR | Zbl
[11] Dougals Jr. J., Rachford H. H., “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Amer. Math. Soc., 82:2 (1956), 421–439 | MR