Regularized additive operator-difference schemes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 449-457 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The construction of additive operator-difference (splitting) schemes for the approximate solution Cauchy problem for the first-order evolutionary equation is considered. Unconditionally stable additive schemes are constructed on the basis of the Samarskii regularization principle for operator-difference schemes. In the case of arbitrary multicomponent splitting, these schemes belong to the class of additive full approximation schemes. Regularized additive operator-difference schemes for evolutionary problems are constructed without the assumption that the regularizing operator and the operator of the problem are commutable. Regularized additive schemes with double multiplicative perturbation of the additive terms of the problem’s operator are proposed. The possibility of using factorized multicomponent splitting schemes, which can be used for the approximate solution of steadystate problems (finite difference relaxation schemes) are discussed. Some possibilities of extending the proposed regularized additive schemes to other problems are considered.
@article{ZVMMF_2010_50_3_a4,
     author = {P. N. Vabishchevich},
     title = {Regularized additive operator-difference schemes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {449--457},
     year = {2010},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a4/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
TI  - Regularized additive operator-difference schemes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 449
EP  - 457
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a4/
LA  - ru
ID  - ZVMMF_2010_50_3_a4
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%T Regularized additive operator-difference schemes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 449-457
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a4/
%G ru
%F ZVMMF_2010_50_3_a4
P. N. Vabishchevich. Regularized additive operator-difference schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 449-457. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a4/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[2] Samarskii A. A., “O regulyarizatsii raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 7:1 (1967), 62–93 | MR

[3] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl

[4] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[5] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 1999 | MR

[6] Samarskii A. A., Vabischevich P. N., “Regulyarizovannye additivnye skhemy polnoi approksimatsii”, Dokl. RAN, 358:4 (1998), 461–464 | MR

[7] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1989

[8] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial URSS, M., 2004

[9] Samarskii A. A., Matus P. P., Vabishchevich P. N., Difference schemes with operator factors, Hardbound, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[10] Peaceman D. W., Rachford H. H., “The numerical solution of parabolic and elliptic differential equations”, J. Soc. Industr. Appl. Math., 3:1 (1955), 28–41 | DOI | MR | Zbl

[11] Dougals Jr. J., Rachford H. H., “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Amer. Math. Soc., 82:2 (1956), 421–439 | MR