An embedded method for the integration of systems of structurally separated ordinary differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 434-448 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An explicit embedded method of the Dormand–Prince type designed for integrating systems of ordinary differential equations of special form is examined. A family of economical fifth-order numerical schemes for integrating systems of structurally separated ordinary differential equations is constructed.
@article{ZVMMF_2010_50_3_a3,
     author = {A. S. Eremin and I. V. Olemskoǐ},
     title = {An embedded method for the integration of systems of structurally separated ordinary differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {434--448},
     year = {2010},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a3/}
}
TY  - JOUR
AU  - A. S. Eremin
AU  - I. V. Olemskoǐ
TI  - An embedded method for the integration of systems of structurally separated ordinary differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 434
EP  - 448
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a3/
LA  - ru
ID  - ZVMMF_2010_50_3_a3
ER  - 
%0 Journal Article
%A A. S. Eremin
%A I. V. Olemskoǐ
%T An embedded method for the integration of systems of structurally separated ordinary differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 434-448
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a3/
%G ru
%F ZVMMF_2010_50_3_a3
A. S. Eremin; I. V. Olemskoǐ. An embedded method for the integration of systems of structurally separated ordinary differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 434-448. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a3/

[1] Olemskoi I. V., “Modifikatsiya algoritma vydeleniya strukturnykh osobennostei”, Vestn. SPb un-ta. Ser. 10, 2006, no. 2, 46–54

[2] Subbotin M. F., Vvedenie v teoreticheskuyu astronomiyu, Nauka, M., 1968

[3] Kutuzov S. A., Olemskoi I. V., Osipkov L. P., Starkov V. N., Matematicheskie metody issledovaniya kosmicheskikh sistem, Uchebnoe posobie, SPbGU, 2003

[4] Kiselev Yu. M., Orlov M. V., “Chislennye algoritmy lineinykh bystrodeistvii”, Zh. vychisl. matem. i matem. fiz., 31:12 (1991), 1763–1771 | MR

[5] Shevchenko G. V., “Chislennyi algoritm resheniya lineinoi zadachi optimalnogo bystrodeistviya”, Zh. vychisl. matem. i matem. fiz., 42:8 (2002), 1166–1178 | MR | Zbl

[6] Louson Dzh., Fizika puchkov zaryazhennykh chastits, Mir, M., 1980

[7] Ovsyannikov D. A., Egorov N. V., Matematicheskoe modelirovanie sistem formirovaniya elektronnykh i ionnykh puchkov, SPbGU, SPb., 1998

[8] Olemskoi I. V., “Chislennyi metod integrirovaniya sistem obyknovennykh differentsialnykh uravnenii”, Matem. metody analiza upravlyaemykh protsessov, L., 1986, 157–160 | MR

[9] Olemskoi I. V., “Ekonomichnaya raschetnaya skhema chetvertogo poryadka tochnosti chislennogo integrirovaniya sistem spetsialnogo vida”, Protsessy upravleniya i ustoichivost, Tr. XXX nauchn. konf., NII Khimii SPbGU, SPb., 1999, 134–143

[10] Olemskoi I. V., “Strukturnyi podkhod v zadache konstruirovaniya yavnykh odnoshagovykh metodov”, Zh. vychisl. matem. i matem. fiz., 43:7 (2003), 961–974 | MR | Zbl

[11] Olemskoi I. V., “Chetyrekhetapnyi metod pyatogo poryadka tochnosti chislennogo integrirovaniya sistem spetsialnogo vida”, Zh. vychisl. matem. i matem. fiz., 42:8 (2002), 1179–1190 | MR | Zbl

[12] Dormand J. R., Prince P. J., “New Runge–Kutta algorithms for numerical simulation in dynamical astronomy”, Celestial Mech., 18 (1978), 223–232 | DOI | MR | Zbl

[13] Dormand J. R., Prince P. J., “A family of embedded Runge–Kutta formulae”, J. Comput. Appl. Math., 6 (1980), 19–26 | DOI | MR | Zbl

[14] Dormand J. R., El-Mikkawy M. E. A., Prince P. J., “Families of Runge–Kutta–Nyström formulae”, J. Numer. Analys., 7 (1987), 235–250 | DOI | MR | Zbl

[15] Olemskoi I. V., “Vlozhennyi pyatietapnyi metod pyatogo poryadka tipa Dormana–Prinsa”, Zh. vychisl. matem. i matem. fiz., 45:7 (2005), 1181–1191 | MR

[16] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[17] Arushanyan A. B., Zaletkin S. F., Chislennoe reshenie obyknovennykh differentsialnykh uravnenii na Fortrane, Izd-vo MGU, M., 1990 | Zbl