Asymptotic behavior of the solution of a singularly perturbed linear-quadratic terminal control problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 423-433 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A quadratic terminal cost functional is minimized on the trajectories of a linear singularly perturbed system. Equality constraints are imposed on the right end of the trajectories, while the multidimensional controls are bounded in the Euclidean norm. An algorithm is proposed for constructing asymptotic approximations to the solution of the problem.
@article{ZVMMF_2010_50_3_a2,
     author = {A. I. Kalinin},
     title = {Asymptotic behavior of the solution of a singularly perturbed linear-quadratic terminal control problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {423--433},
     year = {2010},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a2/}
}
TY  - JOUR
AU  - A. I. Kalinin
TI  - Asymptotic behavior of the solution of a singularly perturbed linear-quadratic terminal control problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 423
EP  - 433
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a2/
LA  - ru
ID  - ZVMMF_2010_50_3_a2
ER  - 
%0 Journal Article
%A A. I. Kalinin
%T Asymptotic behavior of the solution of a singularly perturbed linear-quadratic terminal control problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 423-433
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a2/
%G ru
%F ZVMMF_2010_50_3_a2
A. I. Kalinin. Asymptotic behavior of the solution of a singularly perturbed linear-quadratic terminal control problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 423-433. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a2/

[1] Vasileva A. B., Dmitriev M. G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki i tekhn. Ser. Matem. anal., 20, VINITI, M., 1982, 3–77 | MR

[2] Kokotovic P. V., Khalil H. K., Singular perturbations in systems and control, Macmillan, N. Y., 1986 | MR

[3] Kalinin A. I., “Asimptotika reshenii vozmuschennykh zadach optimalnogo upravleniya”, Izv. RAN. Tekhn. kibernetika, 1994, no. 3, 104–114 | MR | Zbl

[4] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhan., 2006, no. 1, 3–51 | MR | Zbl

[5] Rakitskii Yu. V., Ustinov S. M., Chernorutskii N. G., Chislennye metody resheniya zhestkikh sistem, Nauka, M., 1979 | MR

[6] Grudo Ya. O., Kalinin A. I., “Asimptoticheskaya optimizatsiya nelineinykh singulyarno vozmuschennykh sistem pri ogranichenii upravleniya gipersferoi”, Differents. ur-niya, 44:11 (2008), 1472–1481 | MR | Zbl

[7] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983 | MR | Zbl

[8] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[9] Gabasov R., Kirillova F. M., Konstruktivnye metody optimizatsii, v. 2, Zadachi upravleniya, Universitetskoe, Minsk, 1984 | MR

[10] Gabasov R., Kirillova F. M., Osobye optimalnye upravleniya, Nauka, M., 1973 | MR