Regularization of a discrete scheme for a three-dimensional problem of the evolution of the interface of different fluids
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 557-562 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A regularized discrete scheme is developed that describes the three-dimensional evolution of the interface between fluids with different viscosities and densities in the Leibenzon–Muskat model. The regularization is achieved by smoothing the kernel of the singular integral involved in the differential equation governing the moving interface. The discrete scheme is tested by solving the problem of a drop of one fluid evolving in a translational flow of another.
@article{ZVMMF_2010_50_3_a13,
     author = {D. N. Nikol'skiǐ},
     title = {Regularization of a discrete scheme for a three-dimensional problem of the evolution of the interface of different fluids},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {557--562},
     year = {2010},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a13/}
}
TY  - JOUR
AU  - D. N. Nikol'skiǐ
TI  - Regularization of a discrete scheme for a three-dimensional problem of the evolution of the interface of different fluids
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 557
EP  - 562
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a13/
LA  - ru
ID  - ZVMMF_2010_50_3_a13
ER  - 
%0 Journal Article
%A D. N. Nikol'skiǐ
%T Regularization of a discrete scheme for a three-dimensional problem of the evolution of the interface of different fluids
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 557-562
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a13/
%G ru
%F ZVMMF_2010_50_3_a13
D. N. Nikol'skiǐ. Regularization of a discrete scheme for a three-dimensional problem of the evolution of the interface of different fluids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 557-562. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a13/

[1] Nikolskii D. N., “Matematicheskoe modelirovanie trekhmernoi zadachi evolyutsii poverkhnosti razdela zhidkostei razlichnoi vyazkosti i plotnosti v neodnorodnom grunte”, Zh. vychisl. matem. i matem. fiz., 47:8 (2007), 1402–1412 | MR

[2] Nikolskii D. N., “Issledovanie raboty sistemy nesovershennykh skvazhin s podvizhnoi poverkhnostyu razdela zhidkostei v grunte metagarmonicheskogo klassa pronitsaemostei”, Metody diskretnykh osobennostei v zadachakh matem. fiz. (MDOZMF-2007), Tr. XIII Mezhdunar. simpoziuma, Kharkov–Kherson, 2007, 225–228

[3] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, TOO Yanus, M., 1995 | MR | Zbl

[4] Lifanov I. K., Nikolsky D. N., Piven V. F., “Mathematical modeling of the work of the system of wells in a layer with the exponential law of permeability variation and the mobile liquid interface”, Rus. J. Numer. Anal. and Math. Modelling, 17:4 (2002), 381–391 | MR | Zbl

[5] Kiryakin V. Yu., Setukha A. V., “O skhodimosti vikhrevogo chislennogo metoda resheniya trekhmernykh uravnenii Eilera v lagranzhevykh koordinatakh”, Differents. ur-niya, 43:9 (2007), 1263–1276 | MR | Zbl

[6] Golubeva O. V., Kurs mekhaniki sploshnykh sred, Nauka, M., 1989

[7] Formalev V. F., Reviznikov D. L., Chislennye metody, Fizmatlit, M., 2006

[8] Voinov V. V., “O tochnykh resheniyakh zadachi dvizheniya granitsy razdela nesmeshivayuschikhsya zhidkostei v poristoi srede”, Prikl. mekhan. i tekhn. fiz., 1991, no. 1, 68–71