@article{ZVMMF_2010_50_3_a11,
author = {A. M. Denisov and V. V. Kalinin},
title = {The inverse problem for mathematical models of heart excitation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {539--543},
year = {2010},
volume = {50},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a11/}
}
TY - JOUR AU - A. M. Denisov AU - V. V. Kalinin TI - The inverse problem for mathematical models of heart excitation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 539 EP - 543 VL - 50 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a11/ LA - ru ID - ZVMMF_2010_50_3_a11 ER -
A. M. Denisov; V. V. Kalinin. The inverse problem for mathematical models of heart excitation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 539-543. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a11/
[1] Josephson M. E., Waxman H. L., Cain M. E. et al., “Ventricular activation during ventricular endocardial pacing. II: Role of pace-mapping to localize origin of ventricular tachycardia”, Amer. J. Cardiol., 50:1 (1982), 11–22 | DOI
[2] Li C., He B., “Localization of the site of origin of cardiac activation by means of a heartmodel-based electrocardiographic imaging approach”, IEEE Trans Biomed Engng., 48:6 (2001), 660–669 | DOI
[3] Berenfeld O., Abboud S., “Simulation of cardiac activity and the ecg using a heart model with a reaction-diffusion action potential”, Med. Engng and Phys., 18:8 (1996), 615–625 | DOI
[4] Geselowitz D. B., Muller W. T. III, “A bidomain model for anisotropic cardiac muscle”, Ann Biomed Engng., 11:3–4 (1983), 191–206 | DOI
[5] Henriquez C. S., “Simulating the electrical behavior of cardiac tissue using the bidomain model”, Crit Rev Biomed Engng., 21:1 (1993), 1–77 | MR
[6] Franzone P. C., Pavarino L. F., Taccardi B., “Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models”, Math. Biosci., 197:1 (2005), 35–66 | DOI | MR | Zbl
[7] Broun K. J., Lacey A. A., Reaction-diffusion equations, Oxford Univ. Press, New York, 1990 | MR
[8] Noble D., “A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pacemaker potentials”, J. Physiol., 160:2 (1962), 317–352
[9] Luo C. H., Rudy Y., “A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction”, Circuit. Res., 68:6 (1991), 1501–1526
[10] Aliev R. R., Panfilov A. V., “A simple two-variable model of cardiac excitation”, Chaos, Solitons and Fractals, 7:3 (1996), 293–301 | DOI
[11] Barkley D., “A Model for fast computer simulation of waves in excitable media”, Physica D, 49:1–2 (1991), 61–70 | DOI
[12] FitzHugh R. A., “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI
[13] McKean H. P., “Nagumo's equation”, Advanced Math., 4:3 (1970), 209–223 | DOI | MR | Zbl
[14] Titomir L. I., Kneppo P., Matematicheskoe modelirovanie bioelektricheskogo generatora serdtsa, Fizmatlit, M., 1999
[15] Sepulveda N. G., Roth B. J., Wilswo J. P., “Current injection into a two-dimensional anisotropic bidomain”, Biophys. J., 55:5 (1989), 987–999 | DOI
[16] Medvinskii A. B., Rusakov A. V., Moskalenko A. V. i dr., “Issledovanie avtovolnovykh mekhanizmov variabelnosti elektrokardiogramm vo vremya vysokochastotnykh aritmii: rezultat matematicheskogo modelirovaniya”, Biofizika, 48:2 (2003), 314–323