The inverse problem for mathematical models of heart excitation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 539-543 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problem for mathematical models of heart excitation is stated; this problem is to determine the initial condition in the initial-boundary value problem for an evolutionary system of partial differential equations given the volume potential whose density is determined by the solution to the evolutionary system. It is proved that the solution of the inverse problem in the generic statement is not unique.
@article{ZVMMF_2010_50_3_a11,
     author = {A. M. Denisov and V. V. Kalinin},
     title = {The inverse problem for mathematical models of heart excitation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {539--543},
     year = {2010},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a11/}
}
TY  - JOUR
AU  - A. M. Denisov
AU  - V. V. Kalinin
TI  - The inverse problem for mathematical models of heart excitation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 539
EP  - 543
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a11/
LA  - ru
ID  - ZVMMF_2010_50_3_a11
ER  - 
%0 Journal Article
%A A. M. Denisov
%A V. V. Kalinin
%T The inverse problem for mathematical models of heart excitation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 539-543
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a11/
%G ru
%F ZVMMF_2010_50_3_a11
A. M. Denisov; V. V. Kalinin. The inverse problem for mathematical models of heart excitation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 539-543. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a11/

[1] Josephson M. E., Waxman H. L., Cain M. E. et al., “Ventricular activation during ventricular endocardial pacing. II: Role of pace-mapping to localize origin of ventricular tachycardia”, Amer. J. Cardiol., 50:1 (1982), 11–22 | DOI

[2] Li C., He B., “Localization of the site of origin of cardiac activation by means of a heartmodel-based electrocardiographic imaging approach”, IEEE Trans Biomed Engng., 48:6 (2001), 660–669 | DOI

[3] Berenfeld O., Abboud S., “Simulation of cardiac activity and the ecg using a heart model with a reaction-diffusion action potential”, Med. Engng and Phys., 18:8 (1996), 615–625 | DOI

[4] Geselowitz D. B., Muller W. T. III, “A bidomain model for anisotropic cardiac muscle”, Ann Biomed Engng., 11:3–4 (1983), 191–206 | DOI

[5] Henriquez C. S., “Simulating the electrical behavior of cardiac tissue using the bidomain model”, Crit Rev Biomed Engng., 21:1 (1993), 1–77 | MR

[6] Franzone P. C., Pavarino L. F., Taccardi B., “Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models”, Math. Biosci., 197:1 (2005), 35–66 | DOI | MR | Zbl

[7] Broun K. J., Lacey A. A., Reaction-diffusion equations, Oxford Univ. Press, New York, 1990 | MR

[8] Noble D., “A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pacemaker potentials”, J. Physiol., 160:2 (1962), 317–352

[9] Luo C. H., Rudy Y., “A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction”, Circuit. Res., 68:6 (1991), 1501–1526

[10] Aliev R. R., Panfilov A. V., “A simple two-variable model of cardiac excitation”, Chaos, Solitons and Fractals, 7:3 (1996), 293–301 | DOI

[11] Barkley D., “A Model for fast computer simulation of waves in excitable media”, Physica D, 49:1–2 (1991), 61–70 | DOI

[12] FitzHugh R. A., “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI

[13] McKean H. P., “Nagumo's equation”, Advanced Math., 4:3 (1970), 209–223 | DOI | MR | Zbl

[14] Titomir L. I., Kneppo P., Matematicheskoe modelirovanie bioelektricheskogo generatora serdtsa, Fizmatlit, M., 1999

[15] Sepulveda N. G., Roth B. J., Wilswo J. P., “Current injection into a two-dimensional anisotropic bidomain”, Biophys. J., 55:5 (1989), 987–999 | DOI

[16] Medvinskii A. B., Rusakov A. V., Moskalenko A. V. i dr., “Issledovanie avtovolnovykh mekhanizmov variabelnosti elektrokardiogramm vo vremya vysokochastotnykh aritmii: rezultat matematicheskogo modelirovaniya”, Biofizika, 48:2 (2003), 314–323