@article{ZVMMF_2010_50_3_a1,
author = {Yong Sup Kim and M. A. Rakha and A. K. Rathie},
title = {Generation of {Kummer's} second theorem with application},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {407--422},
year = {2010},
volume = {50},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a1/}
}
TY - JOUR AU - Yong Sup Kim AU - M. A. Rakha AU - A. K. Rathie TI - Generation of Kummer's second theorem with application JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 407 EP - 422 VL - 50 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a1/ LA - en ID - ZVMMF_2010_50_3_a1 ER -
Yong Sup Kim; M. A. Rakha; A. K. Rathie. Generation of Kummer's second theorem with application. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 407-422. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a1/
[1] Bailey W. N., Generalized hypergeometric series, Cambridge Univ. Press, Cambridge, 1935
[2] Bailey W. N., “Products of generalized hypergeometric series”, Proc. London Math. Soc., 28:2 (1928), 242–254 | DOI | Zbl
[3] Kummer E. E., “Uber die hypergeometrihe Reihe $1+\frac{\alpha\beta}{1\cdot\gamma}x+\frac{\alpha(\alpha+1)\beta(\beta+1)}{1\cdot2\cdot\gamma(\gamma+1)}x^2+\frac{\alpha(\alpha+1)(\alpha+2)\beta(\beta+1)(\beta+2)}{1\cdot2\cdot3\cdot\gamma(\gamma+1)(\gamma+2)}x^3+\cdots$”, Z. Math., 15 (1836), 39–83 ; 127–172 | Zbl | Zbl
[4] Lavoie J. L., Grondin F., Rathie A. K., “Generalizations of Whipple's theorem on the sum of a ${}_3F_2$”, J. Comput. Appl. Math., 72 (1996), 293–300 | DOI | MR | Zbl
[5] Preece C. T., “The product of two generalized hypergeometric functions”, Proc. London Math. Soc., 22:2 (1924), 370–380 | DOI | Zbl
[6] Rainville E. D., Special functions, Macmillan Co., New York, 1960 | MR | Zbl
[7] Rathie A. K., Choi J., “Another proof of Kummer's second theorem”, Comm. Korean Math. Soc., 13 (1998), 933–936 | MR | Zbl
[8] Rathie A. K., Nagar V., “On Kummer's second theorem involving product of generalized hypergeometric series”, Le Math. (Catania), 50 (1995), 35–38 | MR | Zbl
[9] Rathie A. K., “A short proof of Preece's identities and other contiguous results”, Rev. Math. Estat., 15 (1997), 207–210 | MR
[10] Rathie A. K., Choi J., “A note on generalizations of Preece's identity and other contiguous results”, Bull. Korean Math. Soc., 35:2 (1998), 399–344 | MR