Generation of Kummer's second theorem with application
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 407-422 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this research paper is to obtain single series expression of $$ e^{-x/2}{}_1F_1(\alpha; 2\alpha+i; x) $$ for $i=0$, $\pm1$, $\pm2$, $\pm3$, $\pm4$, $\pm5$, where ${}_1F_1(\cdot)$ is the function of Kummer. For $i=0$, we have the well known Kummer second theorem. The results are derived with the help of generalized Gauss second summation theorem obtained earlier by Lavoie et al. In addition to this, explicit expressions of $$ {}_2F_1[-2n, \alpha; 2\alpha+i; 2] \text{ and } {}_2F_1[-2n-1, \alpha; 2\alpha+i; 2] $$ each for $i=0$, $\pm1$, $\pm2$, $\pm3$, $\pm4$, $\pm5$ are also given. For $i=0$, we get two interesting and known results recorded in the literature. As an applications of our results, explicit expressios of $$ e^{-x}{}_1F_1(\alpha; 2\alpha+i; x)\times{}_1F_1(\alpha; 2\alpha+j; x) $$ for $i$, $j=0$, $\pm1$, $\pm2$, $\pm3$, $\pm4$, $\pm5$ and $$ (1-x)^{-a}{}_2F_1\left(a, b; 2b+j; -\frac{2x}{1-x}\right) $$ for $j=0$, $\pm1$, $\pm2$, $\pm3$, $\pm4$, $\pm5$ are given. For $i=j=0$ and $j=0$, we respectively get the well known Preece identity and a well known quadratic transformation formula due to Kummer. The results derived in this paper are simple, interesting, easily established and may by useful in the applicable sciences.
@article{ZVMMF_2010_50_3_a1,
     author = {Yong Sup Kim and M. A. Rakha and A. K. Rathie},
     title = {Generation of {Kummer's} second theorem with application},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {407--422},
     year = {2010},
     volume = {50},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a1/}
}
TY  - JOUR
AU  - Yong Sup Kim
AU  - M. A. Rakha
AU  - A. K. Rathie
TI  - Generation of Kummer's second theorem with application
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 407
EP  - 422
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a1/
LA  - en
ID  - ZVMMF_2010_50_3_a1
ER  - 
%0 Journal Article
%A Yong Sup Kim
%A M. A. Rakha
%A A. K. Rathie
%T Generation of Kummer's second theorem with application
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 407-422
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a1/
%G en
%F ZVMMF_2010_50_3_a1
Yong Sup Kim; M. A. Rakha; A. K. Rathie. Generation of Kummer's second theorem with application. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 407-422. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a1/

[1] Bailey W. N., Generalized hypergeometric series, Cambridge Univ. Press, Cambridge, 1935

[2] Bailey W. N., “Products of generalized hypergeometric series”, Proc. London Math. Soc., 28:2 (1928), 242–254 | DOI | Zbl

[3] Kummer E. E., “Uber die hypergeometrihe Reihe $1+\frac{\alpha\beta}{1\cdot\gamma}x+\frac{\alpha(\alpha+1)\beta(\beta+1)}{1\cdot2\cdot\gamma(\gamma+1)}x^2+\frac{\alpha(\alpha+1)(\alpha+2)\beta(\beta+1)(\beta+2)}{1\cdot2\cdot3\cdot\gamma(\gamma+1)(\gamma+2)}x^3+\cdots$”, Z. Math., 15 (1836), 39–83 ; 127–172 | Zbl | Zbl

[4] Lavoie J. L., Grondin F., Rathie A. K., “Generalizations of Whipple's theorem on the sum of a ${}_3F_2$”, J. Comput. Appl. Math., 72 (1996), 293–300 | DOI | MR | Zbl

[5] Preece C. T., “The product of two generalized hypergeometric functions”, Proc. London Math. Soc., 22:2 (1924), 370–380 | DOI | Zbl

[6] Rainville E. D., Special functions, Macmillan Co., New York, 1960 | MR | Zbl

[7] Rathie A. K., Choi J., “Another proof of Kummer's second theorem”, Comm. Korean Math. Soc., 13 (1998), 933–936 | MR | Zbl

[8] Rathie A. K., Nagar V., “On Kummer's second theorem involving product of generalized hypergeometric series”, Le Math. (Catania), 50 (1995), 35–38 | MR | Zbl

[9] Rathie A. K., “A short proof of Preece's identities and other contiguous results”, Rev. Math. Estat., 15 (1997), 207–210 | MR

[10] Rathie A. K., Choi J., “A note on generalizations of Preece's identity and other contiguous results”, Bull. Korean Math. Soc., 35:2 (1998), 399–344 | MR