On a constructive procedure for verifying whether a matrix can be made real by a unitary similarity transformation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 403-406 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are well-known conditions under which a complex $n\times n$ matrix $A$ can be made real by a similarity transformation. Under the additional assumption that $A$ has a simple real spectrum, a constructive answer is given to the question whether this transformation can be realized via a unitary rather than arbitrary similarity.
@article{ZVMMF_2010_50_3_a0,
     author = {Kh. D. Ikramov},
     title = {On a constructive procedure for verifying whether a matrix can be made real by a unitary similarity transformation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {403--406},
     year = {2010},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a0/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - On a constructive procedure for verifying whether a matrix can be made real by a unitary similarity transformation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 403
EP  - 406
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a0/
LA  - ru
ID  - ZVMMF_2010_50_3_a0
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T On a constructive procedure for verifying whether a matrix can be made real by a unitary similarity transformation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 403-406
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a0/
%G ru
%F ZVMMF_2010_50_3_a0
Kh. D. Ikramov. On a constructive procedure for verifying whether a matrix can be made real by a unitary similarity transformation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 403-406. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a0/

[1] Shilov G. E., Matematicheskii analiz. Konechnomernye lineinye prostranstva, Nauka, M., 1969 | MR

[2] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[3] Pearcy C. A., “A complete set of unitary invariants for operators generating finite $W^*$-algebras of type I”, Pacific J. Math., 12 (1962), 1405–1416 | MR | Zbl

[4] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M.–L., 1963 | MR | Zbl

[5] Kurosh A. G., Kurs vysshei algebry, Fizmatgiz, M., 1963 | MR