On a constructive procedure for verifying whether a matrix can be made real by a unitary similarity transformation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 403-406
Cet article a éte moissonné depuis la source Math-Net.Ru
There are well-known conditions under which a complex $n\times n$ matrix $A$ can be made real by a similarity transformation. Under the additional assumption that $A$ has a simple real spectrum, a constructive answer is given to the question whether this transformation can be realized via a unitary rather than arbitrary similarity.
@article{ZVMMF_2010_50_3_a0,
author = {Kh. D. Ikramov},
title = {On a constructive procedure for verifying whether a matrix can be made real by a unitary similarity transformation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {403--406},
year = {2010},
volume = {50},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a0/}
}
TY - JOUR AU - Kh. D. Ikramov TI - On a constructive procedure for verifying whether a matrix can be made real by a unitary similarity transformation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 403 EP - 406 VL - 50 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a0/ LA - ru ID - ZVMMF_2010_50_3_a0 ER -
%0 Journal Article %A Kh. D. Ikramov %T On a constructive procedure for verifying whether a matrix can be made real by a unitary similarity transformation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 403-406 %V 50 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a0/ %G ru %F ZVMMF_2010_50_3_a0
Kh. D. Ikramov. On a constructive procedure for verifying whether a matrix can be made real by a unitary similarity transformation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 3, pp. 403-406. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_3_a0/
[1] Shilov G. E., Matematicheskii analiz. Konechnomernye lineinye prostranstva, Nauka, M., 1969 | MR
[2] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR
[3] Pearcy C. A., “A complete set of unitary invariants for operators generating finite $W^*$-algebras of type I”, Pacific J. Math., 12 (1962), 1405–1416 | MR | Zbl
[4] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M.–L., 1963 | MR | Zbl
[5] Kurosh A. G., Kurs vysshei algebry, Fizmatgiz, M., 1963 | MR