Spatial natural oscillations of a boundary layer with a triple-deck velocity field structure
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 298-319 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The beforehand unclear relation between the viscous-inviscid interaction and the instability of viscous gas flows is illustrated using three-dimensional boundary-layer perturbations in the case of sub- and supersonic outer flows. The assumptions are considered under which asymptotic boundary layer equations with self-induced pressure are derived and the excitation mechanisms of eigenmodes (i.e., Tollmien–Schlichting waves) are described. The resulting dispersion relations are analyzed. The boundary layer in a supersonic flow is found to be stable with respect to two-dimensional perturbations, whereas, in the three-dimensional case, the modes become unstable. The increment of growth is investigated as a function of the Mach number and the orientation of the front of a three-dimensional Tollmien–Schlichting wave.
@article{ZVMMF_2010_50_2_a9,
     author = {K. V. Guzaeva and V. I. Zhuk},
     title = {Spatial natural oscillations of a boundary layer with a triple-deck velocity field structure},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {298--319},
     year = {2010},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a9/}
}
TY  - JOUR
AU  - K. V. Guzaeva
AU  - V. I. Zhuk
TI  - Spatial natural oscillations of a boundary layer with a triple-deck velocity field structure
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 298
EP  - 319
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a9/
LA  - ru
ID  - ZVMMF_2010_50_2_a9
ER  - 
%0 Journal Article
%A K. V. Guzaeva
%A V. I. Zhuk
%T Spatial natural oscillations of a boundary layer with a triple-deck velocity field structure
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 298-319
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a9/
%G ru
%F ZVMMF_2010_50_2_a9
K. V. Guzaeva; V. I. Zhuk. Spatial natural oscillations of a boundary layer with a triple-deck velocity field structure. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 298-319. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a9/

[1] Neiland V. Ya., “K teorii otryva laminarnogo pogranichnogo sloya v sverkhzvukovom potoke”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1969, no. 4, 53–57 | Zbl

[2] Stewartson K., Williams P. G., “Self-induced separation”, Proc. Roy. Soc. London. Ser. A, 312:1509 (1969), 181–206 | DOI | Zbl

[3] Stewartson K., “On the flow near the trailing edge of a flat plate, II”, Mathematika, 16:31, Pt. 1 (1969), 106–121 | DOI | Zbl

[4] Messiter A. F., “Boundary layer flow near the trailing edge of a flat plate”, SIAM. J. Appl. Math., 18:1 (1970), 241–257 | DOI | Zbl

[5] Sychev V. V., “O laminarnom otryve”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1972, no. 3, 47–59 | Zbl

[6] Neiland V. Ya., Asimptoticheskie zadachi teorii vyazkikh sverkhzvukovykh techenii, Tr. TsAGI, 1529, M., 1974, 125 pp.

[7] Stewartson K., “Multistructured boundary layers on flat plates and related bodies”, Advances Appl. Mech., 14, 1974, 145–239

[8] Smith F. T., “On the high Reynolds number theory of laminar flows”, IMA J. Appl. Math., 28:3 (1982), 207–281 | DOI | MR | Zbl

[9] Smith F. T., “Steady and unsteady boundary-layer separation”, Ann. Rev. Fluid Mech., 18 (1986), 197–220 | DOI | MR | Zbl

[10] Sychev V. V. (red.), Asimptoticheskaya teoriya otryvnykh techenii, Nauka, M., 1987

[11] Neiland S. Ya., Bogolepov V. V., Dudin G. N., Lipatov I. I., Asimptoticheskaya teoriya sverkhzvukovykh techenii vyazkogo gaza, Fizmatlit, M., 2003

[12] Schneider W., “Upstream propagation of unsteady disturbances in supersonic boundary layers”, J. Fluid Mech., 63:3 (1974), 465–485 | DOI | Zbl

[13] Brown S. N., Daniels P. G., “On the viscous flow about the trailing edge of a rapidly oscillating plate”, J. Fluid Mech., 67:4 (1975), 743–761 | DOI | Zbl

[14] Ryzhov O. S., “Uravnenie nestatsionarnogo pogranichnogo sloya s samoindutsirovannym davleniem”, Dokl. AN SSSR, 234:4 (1977), 780–761

[15] Ryzhov O. S., Terentev E. D., “O nestatsionarnom pogranichnom sloe s samoindutsirovannym davleniem”, Prikl. matem. i mekhan., 41:6 (1977), 1007–1023 | MR | Zbl

[16] Smith F. T., “On the nonparallel flow stability of the Blasius boundary layer”, Proc. Roy. Soc. London. Ser. A, 366:1724 (1979), 91–109 | DOI | Zbl

[17] Zhuk V. I., Ryzhov O. S., “Svobodnoe vzaimodeistvie i ustoichivost pogranichnogo sloya v neszhimaemoi zhidkosti”, Dokl. AN SSSR, 253:6 (1980), 1326–1329 | MR | Zbl

[18] Ryzhov O. S., Savenkov I. V., “Asimptoticheskii podkhod v teorii gidrodinamicheskoi ustoichivosti”, Matem. modelirovanie, 1:4 (1989), 61–86 | MR | Zbl

[19] Zhuk V. I., Volny Tollmina-Shlikhtinga i solitony, Nauka, M., 2001

[20] Lin C. C., “On the stability of two-dimensional parallel flow. III: Stability in a viscous fluid”, Quart. Appl. Math., 3:4 (1946), 277–301 | MR | Zbl

[21] Mikhailov V. V., “Ob asimptotike neitralnykh krivykh lineinoi zadachi ustoichivosti laminarnogo pogranichnogo sloya”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1981, no. 5, 39–46 | Zbl

[22] Bodonyi B. J., Smith F. T., “The upper branch stability of the Blasius boundary layer, including non-parallel flow effect”, Proc. Roy. Soc. London. Ser. A, 375:1760 (1981), 65–92 | DOI | MR | Zbl

[23] Zhuk V. I., Ryzhov O. S., “Ob asimptotike reshenii uravneniya Orra-Zommerfelda, zadayuschikh neustoichivye kolebaniya pri bolshikh znacheniyakh chisla Reinoldsa”, Dokl. AN SSSR, 268:6 (1983), 1328–1332 | MR | Zbl

[24] Zhuk V. I., “Ob asimptotike reshenii uravneniya Orra-Zommerfelda v oblastyakh, primykayuschikh k dvum vetvyam neitralnoi krivoi”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1984, no. 4, 3–11 | Zbl

[25] Smith F. T., “Nonlinear stability of boundary layers for disturbances of various sizes”, Proc. Roy. Soc. London. Ser. A, 368:1735 (1979), 573–589 | DOI | MR | Zbl

[26] Dorodnitsyn A. A., “Pogranichnyi sloi v szhimaemom gaze”, Prikl. matem. i mekhan., 6:6 (1942), 449–486

[27] Stewartson K., The theory of laminar boundary layers in compressible fluids, Clarendon Press, Oxford, 1964 | Zbl

[28] Ryzhov O. S., “O nestatsionarnom prostranstvennom pogranichnom sloe, svobodno vzaimodeistvuyuschem s vneshnim potokom”, Prikl. matem. i mekhan., 44:6 (1980), 1035–1052 | MR | Zbl

[29] Lin Tszya-tszyao, Teoriya gidrodinamicheskoi ustoichivosti, Izd-vo inostr. lit., M., 1958

[30] Zhuk V. I., Ryzhov O. S., “Ob ustoichivosti svobodno vzaimodeistvuyuschego pogranichnogo sloya”, Prikl. matem. i mekhan., 45:3 (1981), 552–563 | MR | Zbl

[31] Lighthill M. J., “On boundary layers and upstream influence. I: Supersonic flows without separation”, Proc. Roy. Soc. London. Ser. A, 217:1131 (1953), 478–507 | DOI | Zbl

[32] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, McGraw-Hill, New York etc., 1953

[33] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[34] Terentev E. D., “Lineinaya zadacha o vibratore v dozvukovom pogranichnom sloe”, Prikl. matem. i mekhan., 45:6 (1981), 1049–1055