A modified combined grid method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 286-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A modified combined grid method is proposed for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped. The six-point averaging operator is applied at next-to-the-boundary grid points, while the 18-point averaging operator is used instead of the 26-point one at the remaining grid points. Assuming that the boundary values given on the faces have fourth derivatives satisfying the Hölder condition, the boundary values on the edges are continuous, and their second derivatives obey a matching condition implied by the Laplace equation, the grid solution is proved to converge uniformly with the fourth order with respect to the mesh size.
@article{ZVMMF_2010_50_2_a8,
     author = {E. A. Volkov},
     title = {A modified combined grid method for solving the {Dirichlet} problem for the {Laplace} equation on a rectangular parallelepiped},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {286--297},
     year = {2010},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a8/}
}
TY  - JOUR
AU  - E. A. Volkov
TI  - A modified combined grid method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 286
EP  - 297
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a8/
LA  - ru
ID  - ZVMMF_2010_50_2_a8
ER  - 
%0 Journal Article
%A E. A. Volkov
%T A modified combined grid method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 286-297
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a8/
%G ru
%F ZVMMF_2010_50_2_a8
E. A. Volkov. A modified combined grid method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 286-297. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a8/

[1] Volkov E. A., “O kombinirovannom setochnom metode resheniya zadachi Dirikhle dlya uravneniya Laplasa na pryamougolnom parallelepipede”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 665–670 | MR | Zbl

[2] Volkov E. A., “Vesovye otsenki pogreshnosti metoda setok resheniya uravnenii Laplasa i Puassona”, Tr. MI AN SSSR, 117, M., 1972, 100–112 | Zbl

[3] Keldysh M. V., “O razreshimosti i ustoichivosti zadachi Dirikhle”, Uspekhi matem. nauk, 1940, no. 8, 171–231

[4] Volkov E. A., “O differentsialnykh svoistvakh reshenii uravnenii Laplasa i Puassona na parallelepipede i effektivnykh otsenkakh pogreshnosti metoda setok”, Tr. MI AN SSSR, 105, M., 1969, 46–65 | Zbl

[5] Kellog O. D., “On the derivatives of harmonic functions on the boundary”, Trans. Amer. Math. Soc., 33:2 (1931), 486–510 | MR

[6] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, Izd-vo inostr. lit., M., 1957

[7] Volkov E. A., “On the grid method for approximating the derivatives of the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Russ. J. Numer. Analys. Math. Modelling, 19:3 (2004), 269–278 | DOI | MR | Zbl

[8] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl

[9] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 1, Fizmatlit, M., 2007

[10] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR