Multidimensional parametrization and numerical solution of systems of nonlinear equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 255-267 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The numerical solution of a system of nonlinear algebraic or transcendental equations is examined within the framework of the parameter continuation method. An earlier result of the author according to which the best parameters should be sought in the tangent space of the solution set of this system is now refined to show that the directions of the eigenvectors of a certain linear self-adjoint operator should be used for finding these parameters. These directions correspond to the extremal values of the quadratic form associated with the above operator. The parametric approximation of curves and surfaces is considered.
@article{ZVMMF_2010_50_2_a5,
     author = {E. B. Kuznetsov},
     title = {Multidimensional parametrization and numerical solution of systems of nonlinear equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {255--267},
     year = {2010},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a5/}
}
TY  - JOUR
AU  - E. B. Kuznetsov
TI  - Multidimensional parametrization and numerical solution of systems of nonlinear equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 255
EP  - 267
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a5/
LA  - ru
ID  - ZVMMF_2010_50_2_a5
ER  - 
%0 Journal Article
%A E. B. Kuznetsov
%T Multidimensional parametrization and numerical solution of systems of nonlinear equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 255-267
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a5/
%G ru
%F ZVMMF_2010_50_2_a5
E. B. Kuznetsov. Multidimensional parametrization and numerical solution of systems of nonlinear equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 255-267. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a5/

[1] Lahaye M. E., “Une metode de resolution d'une categorie d'equations transcendentes”, Compt. Rend. hebdomataires des seances de L'Acad. sci., 198:21 (1934), 1840–1842

[2] Davidenko D. F., “Ob odnom novom metode chislennogo resheniya sistem nelineinykh uravnenii”, Dokl. AN SSSR, 88:4 (1953), 601–602 | MR | Zbl

[3] Davidenko D. F., “O priblizhennom reshenii sistem nelineinykh uravnenii”, Ukr. matem. zhurnal, 5:2 (1953), 196–206 | MR | Zbl

[4] Vorovich I. I., Zipalova V. F., “K resheniyu nelineinykh kraevykh zadach teorii uprugosti metodom perekhoda k zadache Koshi”, Prikl. matem. i mekhan., 29:5 (1965), 894–901 | MR | Zbl

[5] Riks E., “The application of Newton's method to the problem of elastic stability”, Trans. ASME, E, 39:4 (1972), 1060–1065 | Zbl

[6] Grigolyuk E. I., Shalashilin V. I., Problems of nonlinear deformation. The continuation method applied to nonlinear problems in solid mechanics, Kluwer Acad. Publs, Dordrecht etc., 1991 | MR | MR | Zbl

[7] Shalashilin V. I., Kuznetsov E. B., “Nailuchshii parametr prodolzheniya resheniya”, Dokl. RAN, 334:5 (1994), 566–568 | MR | Zbl

[8] Shalashilin V. I., Kuznetsov E. B., Parametric continuation and optimal parametrization in applied mathematics and mechanics, Kluwer Acad. Publs, Dordrecht etc., 2003 | MR | MR | Zbl

[9] Keller H. B., Lectures on numerical methods in bifurcation problems, Springer, Berlin, 1987 | MR

[10] Allower E. L., George K., “Numerical path following”, Handbook Numer. Analys., 5, North-Holland, 1997, 3–207 | MR

[11] Ren Y., Spence A., “A note on bifurcation points for index-1 differential-algebraic problems”, J. Comput. and Appl. Math., 110 (1999), 1–14 | DOI | MR | Zbl

[12] Kulikov G. Yu., Weiner R., Doubly quasi-consistent parallel explicit peer method with built-in global rerror estimation, Rept No 18, Martin-Luther-Univ. Halle–Wittenberg, Inst. Math., 2008, 22 pp.

[13] Kulikov G. Yu., “On quasi-consistent integration by Nordsieck methods”, J. Comput. and Appl. Math., 225 (2009), 268–287 | DOI | MR | Zbl

[14] Kuznetsov E. B., “O nailuchshei parametrizatsii”, Zh. vychisl. matem. i matem. fiz., 48:12 (2008), 2129–2140 | MR

[15] Rashevskii P. K., Kurs differentsialnoi geometrii, Gostekhteorizdat, M.–L., 1950

[16] Gelfand I. M., Lektsii po lineinei algebre, Nauka, M., 1966 | MR

[17] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[18] Foks A., Pratt M., Vychislitelnaya geometriya, Mir, M., 1982 | MR

[19] Kuznetsov E. B., Shalashilin V. I., “Parametricheskoe priblizhenie”, Zh. vychisl. matem. i matem. fiz., 34:12 (1994), 1757–1769 | MR | Zbl

[20] Lee E. T. Y., “Choosing nodes in parametric curve interpolation”, Computer-Aided Design, 1989, no. 21, 363–370 | DOI | Zbl

[21] Kuznetsov E. B., Yakimovich A. Yu., “Nailuchshaya parametrizatsiya v zadachakh priblizheniya krivykh i poverkhnostei”, Zh. vychisl. matem. i matem. fiz., 45:5 (2005), 760–774 | MR | Zbl

[22] Verzhbitskii V. M., Osnovy chislennykh metodov, Vyssh. shkola, M., 2002

[23] Nikulin E. A., Kompyuternaya geometriya i algoritmy mashinnoi grafiki, BKhV-Peterburg, SPb., 2003