@article{ZVMMF_2010_50_2_a15,
author = {S. A. Brednikhin and I. N. Medvedev and G. A. Mikhaǐlov},
title = {Estimation of the criticality parameters of branching processes by the {Monte} {Carlo} method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {362--374},
year = {2010},
volume = {50},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a15/}
}
TY - JOUR AU - S. A. Brednikhin AU - I. N. Medvedev AU - G. A. Mikhaǐlov TI - Estimation of the criticality parameters of branching processes by the Monte Carlo method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 362 EP - 374 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a15/ LA - ru ID - ZVMMF_2010_50_2_a15 ER -
%0 Journal Article %A S. A. Brednikhin %A I. N. Medvedev %A G. A. Mikhaǐlov %T Estimation of the criticality parameters of branching processes by the Monte Carlo method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 362-374 %V 50 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a15/ %G ru %F ZVMMF_2010_50_2_a15
S. A. Brednikhin; I. N. Medvedev; G. A. Mikhaǐlov. Estimation of the criticality parameters of branching processes by the Monte Carlo method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 362-374. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a15/
[1] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR
[2] Mikhailov G. A., “Raschety kriticheskikh sistem metodom Monte-Karlo”, Zh. vychisl. matem. i matem. fiz., 6:1 (1966), 71–80
[3] Leiberoth J., “A Monte-Carlo technique to solve the static eigenvalue problem of the Boltzmann transport equation”, Nukleonik, 11:5 (1968), 213
[4] Zolotukhin V. G., Maiorov L. V., Otsenka parametrov kritichnosti reaktorov metodom Monte-Karlo, Energoatomizdat, M., 1984
[5] Vladimirov V. S., “O primenenii metoda Monte-Karlo dlya otyskaniya naimenshego kharakteristicheskogo chisla i sootvetstvuyuschei sobstvennoi funktsii lineinogo integralnogo operatora”, Teoriya veroyatnostei i ee primenenie, 1956, no. 1, 113 | Zbl
[6] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR
[7] Devison B., Teoriya perenosa neitronov, Atomizdat, M., 1960
[8] Mikhailov G. A., Optimizatsiya vesovykh metodov Monte-Karlo, Nauka, M., 1987 | MR
[9] Hammersley J. M., Morton K. W., “Poor man's Monte Carlo”, J. Roy. Statist. Soc. Ser. B (Methodological), 16:1
[10] Smirnov N. V., Dunin-Barkovskii I. V., Kratkii kurs matematicheskoi statistiki dlya tekhnicheskikh prilozhenii, Fizmatgiz, M., 1959
[11] Mikhailov G. A., Medvedev I. N., “Uluchshenie vesovogo statisticheskogo modelirovaniya na osnove perekhoda k protsesse Galtona-Vatsona”, Dokl. RAN, 424:3 (2009), 1–4 | MR
[12] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Izdat. tsentr “Akademiya”, M., 2006
[13] Ueki T., Brown F. B., “Stationarity modeling and informatics-based diagnostics in Monte Carlo criticality calculations”, Nucl. Sci. Engng., 149 (2005), 38–50
[14] Shannon C. E., “A mathematical theory of communication”, Bell System. Techn. J., 27 (1948), 379–423 ; 623–656 | MR | Zbl
[15] Gelfand I. M., Kolmogorov A. N., Yaglom A. M., “Kolichestvo informatsii i entropiya dlya nepreryvnykh raspredelenii”, Tr. III Vses. matem. s'ezda, v. 3, Izd-vo AN SSSR, M., 1958, 300–320
[16] Romanov Yu. A., “Tochnye resheniya odnoskorostnogo kineticheskogo uravneniya i ikh ispolzovanie dlya rascheta diffuzionnykh zadach (usovershenstvovannyi diffuzionnyi metod)”, Issl. kritich. parametrov reaktornykh sistem, Gosatomizdat, M., 1960, 3–26
[17] Mikhailov G. A., Lotova G. Z., “Otsenki veroyatnostnykh momentov kriticheskikh znachenii parametrov uravneniya perenosa chastits v stokhasticheskoi srede”, Dokl. RAN, 356:2 (1997), 166–169 | MR | Zbl