Estimation of the criticality parameters of branching processes by the Monte Carlo method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 362-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Monte Carlo algorithms designed for the estimation of the criticality parameters of multiplying particle transport processes (actually, these are inhomogeneous branching processes) are described and examined. The effective multiplication factor and the time multiplication constant are used as the basic criticality parameters. Algorithms for the direct simulation of “trees” of trajectories are considered as algorithms for the statistical modeling of the iterations of an integral operator with the kernel equal to the substochastic density of the transition to the next generation of fission events in the corresponding phase space. These algorithms provide a basis for constructing effective statistical estimates of the criticality parameters (with regard to the sequence of generations with different indexes) and for the analysis of the corresponding error.
@article{ZVMMF_2010_50_2_a15,
     author = {S. A. Brednikhin and I. N. Medvedev and G. A. Mikhaǐlov},
     title = {Estimation of the criticality parameters of branching processes by the {Monte} {Carlo} method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {362--374},
     year = {2010},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a15/}
}
TY  - JOUR
AU  - S. A. Brednikhin
AU  - I. N. Medvedev
AU  - G. A. Mikhaǐlov
TI  - Estimation of the criticality parameters of branching processes by the Monte Carlo method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 362
EP  - 374
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a15/
LA  - ru
ID  - ZVMMF_2010_50_2_a15
ER  - 
%0 Journal Article
%A S. A. Brednikhin
%A I. N. Medvedev
%A G. A. Mikhaǐlov
%T Estimation of the criticality parameters of branching processes by the Monte Carlo method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 362-374
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a15/
%G ru
%F ZVMMF_2010_50_2_a15
S. A. Brednikhin; I. N. Medvedev; G. A. Mikhaǐlov. Estimation of the criticality parameters of branching processes by the Monte Carlo method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 362-374. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a15/

[1] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR

[2] Mikhailov G. A., “Raschety kriticheskikh sistem metodom Monte-Karlo”, Zh. vychisl. matem. i matem. fiz., 6:1 (1966), 71–80

[3] Leiberoth J., “A Monte-Carlo technique to solve the static eigenvalue problem of the Boltzmann transport equation”, Nukleonik, 11:5 (1968), 213

[4] Zolotukhin V. G., Maiorov L. V., Otsenka parametrov kritichnosti reaktorov metodom Monte-Karlo, Energoatomizdat, M., 1984

[5] Vladimirov V. S., “O primenenii metoda Monte-Karlo dlya otyskaniya naimenshego kharakteristicheskogo chisla i sootvetstvuyuschei sobstvennoi funktsii lineinogo integralnogo operatora”, Teoriya veroyatnostei i ee primenenie, 1956, no. 1, 113 | Zbl

[6] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[7] Devison B., Teoriya perenosa neitronov, Atomizdat, M., 1960

[8] Mikhailov G. A., Optimizatsiya vesovykh metodov Monte-Karlo, Nauka, M., 1987 | MR

[9] Hammersley J. M., Morton K. W., “Poor man's Monte Carlo”, J. Roy. Statist. Soc. Ser. B (Methodological), 16:1

[10] Smirnov N. V., Dunin-Barkovskii I. V., Kratkii kurs matematicheskoi statistiki dlya tekhnicheskikh prilozhenii, Fizmatgiz, M., 1959

[11] Mikhailov G. A., Medvedev I. N., “Uluchshenie vesovogo statisticheskogo modelirovaniya na osnove perekhoda k protsesse Galtona-Vatsona”, Dokl. RAN, 424:3 (2009), 1–4 | MR

[12] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Izdat. tsentr “Akademiya”, M., 2006

[13] Ueki T., Brown F. B., “Stationarity modeling and informatics-based diagnostics in Monte Carlo criticality calculations”, Nucl. Sci. Engng., 149 (2005), 38–50

[14] Shannon C. E., “A mathematical theory of communication”, Bell System. Techn. J., 27 (1948), 379–423 ; 623–656 | MR | Zbl

[15] Gelfand I. M., Kolmogorov A. N., Yaglom A. M., “Kolichestvo informatsii i entropiya dlya nepreryvnykh raspredelenii”, Tr. III Vses. matem. s'ezda, v. 3, Izd-vo AN SSSR, M., 1958, 300–320

[16] Romanov Yu. A., “Tochnye resheniya odnoskorostnogo kineticheskogo uravneniya i ikh ispolzovanie dlya rascheta diffuzionnykh zadach (usovershenstvovannyi diffuzionnyi metod)”, Issl. kritich. parametrov reaktornykh sistem, Gosatomizdat, M., 1960, 3–26

[17] Mikhailov G. A., Lotova G. Z., “Otsenki veroyatnostnykh momentov kriticheskikh znachenii parametrov uravneniya perenosa chastits v stokhasticheskoi srede”, Dokl. RAN, 356:2 (1997), 166–169 | MR | Zbl