Selection functionals in autonomous models of biological systems with continuous age and spatial structure
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 338-346 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of the relation between evolutionary optimality and the stability of equilibrium states is described. The main result of the theory is stated in the case of quasilinear dynamical systems in normed spaces. Applications of the theory to models of structured biological communities are discussed. Functionals for communities with an age and spatial structure are computed on the basis of available information on steady-state stationary distributions. The functionals are optimized with respect to the parameters of evolutionary selection.
@article{ZVMMF_2010_50_2_a12,
     author = {V. N. Razzhevaǐkin},
     title = {Selection functionals in autonomous models of biological systems with continuous age and spatial structure},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {338--346},
     year = {2010},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a12/}
}
TY  - JOUR
AU  - V. N. Razzhevaǐkin
TI  - Selection functionals in autonomous models of biological systems with continuous age and spatial structure
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 338
EP  - 346
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a12/
LA  - ru
ID  - ZVMMF_2010_50_2_a12
ER  - 
%0 Journal Article
%A V. N. Razzhevaǐkin
%T Selection functionals in autonomous models of biological systems with continuous age and spatial structure
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 338-346
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a12/
%G ru
%F ZVMMF_2010_50_2_a12
V. N. Razzhevaǐkin. Selection functionals in autonomous models of biological systems with continuous age and spatial structure. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 338-346. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a12/

[1] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskix soobschestv, Nauka, M., 1978 | MR

[2] Semevskii F. N., Semenov S. M., Matematicheskoe modelirovanie ekologicheskikh protsessov, Gidrometeoizdat, L., 1982

[3] Darwin Ch., On the origin of species, John Murray, London, 1859; Дарвин Ч., Происхождение видов путем естественного отбора, Просвещение, М., 1987

[4] Gorban A. M., Obkhod ravnovesiya, Nauka, M., 1985 | MR

[5] Lotka A. J., “The stability of the normal age distribution”, Proc. Nat. Acad. Sci., 8 (1922), 339–345 | DOI

[6] Leslie P. H., “On the use of matricies in certain population mathematics”, Biometrika, 33:3 (1945), 183–212 | DOI | MR | Zbl

[7] Matsenko V. H., “A nonlinear model of age-dependent population dynamics”, Nonlinear Oscillations, 23:3 (2003), 350–360 | DOI | MR

[8] Ebeling E., Engel A., Faistel R., Fizika protsessov evolyutsii, URSS, M., 2001

[9] Razzhevaikin V. N., Svyaz ustoichivosti i optimalnosti v mikroevolyutsionnykh raspredelennykh sistemakh kvazilineinogo tipa, VTs RAN, M., 1991

[10] Razzhevaikin V. N., Ustoichivost i evolyutsionnaya optimalnost prilozheniya kvazilineinoi teorii k konkretnym raspredelennym biologicheskim sistemam, VTs RAN, M., 1994

[11] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer, New York, 1983 | MR | Zbl

[12] Webb G. F., Theory of nonlinear age-dependent population dynamics, Monographs and Textbooks in Pure and Appl. Math., 89, New York, 1985 | MR

[13] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[14] Gerasimov A. N., Razzhevaikin V. N., “Dinamika epidemicheskogo protsessa v geterogennoi ne polnostyu izolirovannoi populyatsii s uchetom sezonnykh kolebanii aktivnosti mekhanizma peredachi”, Zh. vychisl. matem. i matem. fiz., 48:8 (2008), 1488–1499 | MR | Zbl

[15] Razzhevaikin V. N., Evolyutsionnaya optimalnost i ustoichivost v raspredelennykh sistemakh, VTs RAN, M., 1989 | MR

[16] Logofet D. O., “Convexity in projection matrices: Projection to a calibration problem”, Ecological Modeling, 2008, no. 216, 217–228 | DOI

[17] Razzhevaikin V. N., Shpitonkov M. I., “Modelnoe obosnovanie korrelyatsionnoi adaptometrii s primeneniem metodov evolyutsionnoi optimalnosti”, Zh. vychisl. matem. i matem. fiz., 43:2 (2003), 308–320 | MR | Zbl