@article{ZVMMF_2010_50_2_a12,
author = {V. N. Razzhevaǐkin},
title = {Selection functionals in autonomous models of biological systems with continuous age and spatial structure},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {338--346},
year = {2010},
volume = {50},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a12/}
}
TY - JOUR AU - V. N. Razzhevaǐkin TI - Selection functionals in autonomous models of biological systems with continuous age and spatial structure JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 338 EP - 346 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a12/ LA - ru ID - ZVMMF_2010_50_2_a12 ER -
%0 Journal Article %A V. N. Razzhevaǐkin %T Selection functionals in autonomous models of biological systems with continuous age and spatial structure %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 338-346 %V 50 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a12/ %G ru %F ZVMMF_2010_50_2_a12
V. N. Razzhevaǐkin. Selection functionals in autonomous models of biological systems with continuous age and spatial structure. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 338-346. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a12/
[1] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskix soobschestv, Nauka, M., 1978 | MR
[2] Semevskii F. N., Semenov S. M., Matematicheskoe modelirovanie ekologicheskikh protsessov, Gidrometeoizdat, L., 1982
[3] Darwin Ch., On the origin of species, John Murray, London, 1859; Дарвин Ч., Происхождение видов путем естественного отбора, Просвещение, М., 1987
[4] Gorban A. M., Obkhod ravnovesiya, Nauka, M., 1985 | MR
[5] Lotka A. J., “The stability of the normal age distribution”, Proc. Nat. Acad. Sci., 8 (1922), 339–345 | DOI
[6] Leslie P. H., “On the use of matricies in certain population mathematics”, Biometrika, 33:3 (1945), 183–212 | DOI | MR | Zbl
[7] Matsenko V. H., “A nonlinear model of age-dependent population dynamics”, Nonlinear Oscillations, 23:3 (2003), 350–360 | DOI | MR
[8] Ebeling E., Engel A., Faistel R., Fizika protsessov evolyutsii, URSS, M., 2001
[9] Razzhevaikin V. N., Svyaz ustoichivosti i optimalnosti v mikroevolyutsionnykh raspredelennykh sistemakh kvazilineinogo tipa, VTs RAN, M., 1991
[10] Razzhevaikin V. N., Ustoichivost i evolyutsionnaya optimalnost prilozheniya kvazilineinoi teorii k konkretnym raspredelennym biologicheskim sistemam, VTs RAN, M., 1994
[11] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer, New York, 1983 | MR | Zbl
[12] Webb G. F., Theory of nonlinear age-dependent population dynamics, Monographs and Textbooks in Pure and Appl. Math., 89, New York, 1985 | MR
[13] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl
[14] Gerasimov A. N., Razzhevaikin V. N., “Dinamika epidemicheskogo protsessa v geterogennoi ne polnostyu izolirovannoi populyatsii s uchetom sezonnykh kolebanii aktivnosti mekhanizma peredachi”, Zh. vychisl. matem. i matem. fiz., 48:8 (2008), 1488–1499 | MR | Zbl
[15] Razzhevaikin V. N., Evolyutsionnaya optimalnost i ustoichivost v raspredelennykh sistemakh, VTs RAN, M., 1989 | MR
[16] Logofet D. O., “Convexity in projection matrices: Projection to a calibration problem”, Ecological Modeling, 2008, no. 216, 217–228 | DOI
[17] Razzhevaikin V. N., Shpitonkov M. I., “Modelnoe obosnovanie korrelyatsionnoi adaptometrii s primeneniem metodov evolyutsionnoi optimalnosti”, Zh. vychisl. matem. i matem. fiz., 43:2 (2003), 308–320 | MR | Zbl