@article{ZVMMF_2010_50_2_a1,
author = {A. I. Zadorin and N. A. Zadorin},
title = {Spline interpolation on a uniform grid for a function with a boundary layer component},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {221--233},
year = {2010},
volume = {50},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a1/}
}
TY - JOUR AU - A. I. Zadorin AU - N. A. Zadorin TI - Spline interpolation on a uniform grid for a function with a boundary layer component JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 221 EP - 233 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a1/ LA - ru ID - ZVMMF_2010_50_2_a1 ER -
%0 Journal Article %A A. I. Zadorin %A N. A. Zadorin %T Spline interpolation on a uniform grid for a function with a boundary layer component %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 221-233 %V 50 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a1/ %G ru %F ZVMMF_2010_50_2_a1
A. I. Zadorin; N. A. Zadorin. Spline interpolation on a uniform grid for a function with a boundary layer component. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 221-233. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a1/
[1] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[2] Zadorin A. I., “Metod interpolyatsii na sguschayuscheisya setke dlya funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 48:9 (2008), 1673–1684 | MR
[3] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992
[4] Zadorin A. I., “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sibirskii zhurnal vychisl. matem., 10:3 (2007), 267–275
[5] Zadorin A. I., “Interpolation method for a function with a sungular component”, Lect. Notes in Comput. Sci., 5434, 2009, 612–619 | Zbl
[6] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scient., Singapure, 1996 | MR
[7] Kellogg R. B., Tsan A., “Analysis of some difference approximations for a singular perturbation problems without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | MR | Zbl
[8] Liseikin V. D., “O chislennom reshenii uravnenii so stepennym pogransloem”, Zh. vychisl. matem. i matem. fiz., 26:12 (1986), 1813–1820 | MR
[9] Vulanovic R., “On a numerical solution of a power layer problem”, Numer. Meth. and Approximation Theory, v. 3, Univ. Nis, 1987, 423–431 | MR
[10] Kandilarov J. D., Vulkov L. G., Zadorin A. I., “A method of lines approach to the numerical solution of singularly perturbed elliptic problems”, Lect. Notes in Comput. Sci., 1988, 2001, 451–458 | MR | Zbl
[11] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl
[12] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248
[13] Vulkov L. G., Zadorin A. I., “Two-grid interpolation algorithms for difference schemes of exponential type for semilinear diffusion convection-dominated equations”, Amer. Inst. Phys. Conf. Proc., 1067 (2008), 284–292 | Zbl