Spline interpolation on a uniform grid for a function with a boundary layer component
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 221-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Spline interpolation of functions of one variable with a boundary-layer component is examined. Functions of this type can arise in the solution of a singularly perturbed boundary value problem on an interval. Spline interpolation formulas that are exact for the boundary-layer component are constructed, and their errors are estimated. Formulas for calculating the derivative based on the constructed interpolants are obtained. Numerical results are presented.
@article{ZVMMF_2010_50_2_a1,
     author = {A. I. Zadorin and N. A. Zadorin},
     title = {Spline interpolation on a uniform grid for a function with a boundary layer component},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {221--233},
     year = {2010},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a1/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - N. A. Zadorin
TI  - Spline interpolation on a uniform grid for a function with a boundary layer component
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 221
EP  - 233
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a1/
LA  - ru
ID  - ZVMMF_2010_50_2_a1
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A N. A. Zadorin
%T Spline interpolation on a uniform grid for a function with a boundary layer component
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 221-233
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a1/
%G ru
%F ZVMMF_2010_50_2_a1
A. I. Zadorin; N. A. Zadorin. Spline interpolation on a uniform grid for a function with a boundary layer component. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 221-233. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a1/

[1] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[2] Zadorin A. I., “Metod interpolyatsii na sguschayuscheisya setke dlya funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 48:9 (2008), 1673–1684 | MR

[3] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[4] Zadorin A. I., “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sibirskii zhurnal vychisl. matem., 10:3 (2007), 267–275

[5] Zadorin A. I., “Interpolation method for a function with a sungular component”, Lect. Notes in Comput. Sci., 5434, 2009, 612–619 | Zbl

[6] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scient., Singapure, 1996 | MR

[7] Kellogg R. B., Tsan A., “Analysis of some difference approximations for a singular perturbation problems without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | MR | Zbl

[8] Liseikin V. D., “O chislennom reshenii uravnenii so stepennym pogransloem”, Zh. vychisl. matem. i matem. fiz., 26:12 (1986), 1813–1820 | MR

[9] Vulanovic R., “On a numerical solution of a power layer problem”, Numer. Meth. and Approximation Theory, v. 3, Univ. Nis, 1987, 423–431 | MR

[10] Kandilarov J. D., Vulkov L. G., Zadorin A. I., “A method of lines approach to the numerical solution of singularly perturbed elliptic problems”, Lect. Notes in Comput. Sci., 1988, 2001, 451–458 | MR | Zbl

[11] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[12] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[13] Vulkov L. G., Zadorin A. I., “Two-grid interpolation algorithms for difference schemes of exponential type for semilinear diffusion convection-dominated equations”, Amer. Inst. Phys. Conf. Proc., 1067 (2008), 284–292 | Zbl