On the approximation of the derivatives of the Hermite interpolation polynomial on a triangle
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 211-220
Cet article a éte moissonné depuis la source Math-Net.Ru
Bounds on the deviation of the directional derivatives of the Hermite polynomial in the directions of a triangle sides are obtained; it is proved that these bounds are sharp. As a consequence, bounds on the deviations of the partial derivatives up to the third order inclusive are obtained.
@article{ZVMMF_2010_50_2_a0,
author = {A. V. Meleshkina},
title = {On the approximation of the derivatives of the {Hermite} interpolation polynomial on a triangle},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {211--220},
year = {2010},
volume = {50},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a0/}
}
TY - JOUR AU - A. V. Meleshkina TI - On the approximation of the derivatives of the Hermite interpolation polynomial on a triangle JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 211 EP - 220 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a0/ LA - ru ID - ZVMMF_2010_50_2_a0 ER -
%0 Journal Article %A A. V. Meleshkina %T On the approximation of the derivatives of the Hermite interpolation polynomial on a triangle %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 211-220 %V 50 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a0/ %G ru %F ZVMMF_2010_50_2_a0
A. V. Meleshkina. On the approximation of the derivatives of the Hermite interpolation polynomial on a triangle. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 2, pp. 211-220. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_2_a0/
[1] Zenisek A., “Maximum-angle condition and triangular finite element of Hermite type”, Math. Comput., 64:211 (1995), 929–941 | MR | Zbl
[2] Subbotin Yu. N., “Novyi kubicheskii element v MKE”, Teoriya funktsii, Tr. In-ta matem. i mekhan., 11, no. 2, UrO RAN, Ekaterinburg, 2005, 120–130
[3] Matveeva Yu. V., “Ob approksimatsii proizvodnykh interpolyatsionnogo mnogochlena po napravleniyam na treugolnike”, Sovrem. metody teorii funktsii i smezhnye probl., Materialy konferentsii, Voronezh, 2007, 120–121
[4] Meleshkina A. V., “Ob otsenke proizvodnoi po napravleniyu ermitova splaina na treugolnike”, Matem., Mekhan., 9, Saratovskii un-t, Saratov, 2007, 54–57