@article{ZVMMF_2010_50_1_a7,
author = {V. A. Garanzha},
title = {Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {71--98},
year = {2010},
volume = {50},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a7/}
}
TY - JOUR AU - V. A. Garanzha TI - Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 71 EP - 98 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a7/ LA - en ID - ZVMMF_2010_50_1_a7 ER -
V. A. Garanzha. Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 1, pp. 71-98. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a7/
[1] Lantsosh K., Variatsionnye printsipy mekhaniki, Mir, M., 1965
[2] Dacorogna B., Introduction to the calculus of variations, Imperial College, London, 1992
[3] Young W. H., “On classes of summable functions and their Fourier series”, Proc. Roy. Soc. (A), 87 (1912), 225–229 | DOI
[4] Voronoi G. F., “Nouveles applications des parameters continues a la theorie de formes quadratiques”, J. Reine Angew. Math., 134 (1908), 198–287 | Zbl
[5] Edelsbrunner H., Seidel R., “Voronoi diagrams and arrangements”, Discrete computational geometry, 1 (1986), 25–44 | DOI | MR | Zbl
[6] Edelsbrunner H., Geometry and topology for mesh generation, Cambridge monographs on Applied and Computational Mathematics, 6, Cambridge Univ. Press, New York, 2001 | MR
[7] Reshetnyak Yu. G., “Izotermicheskie koordinaty na poverkhnostyakh ogranichennoi integralnoi srednei krivizny”, Dokl. AN SSSR, 174:5 (1967), 1024–1025 | Zbl
[8] Aleksandrov A. D., Zalgaller V. A., Dvumernye mnogoobraziya ogranichennoi krivizny (osnovy vnutrennei geometrii poverkhnostei), Tr. MI AN SSSR, 63, M., 1962 | MR | Zbl
[9] Aleksandrov A. D., “Poverkhnosti, predstavimye raznostyami vypuklykh funktsii”, Dokl. AN SSSR, 72:4 (1950), 613–616 | MR | Zbl
[10] Reshetnyak Yu. G., “Ob odnom obobschenii vypuklykh poverkhnostei”, Matem. sb., 40 (1956), 381–398 | Zbl
[11] Bakelman I. Ya., “Differentsialnaya geometriya gladkikh neregulyarnykh poverkhnostei”, Uspekhi matem. nauk, 11:2 (1956), 67–124 | MR
[12] Pogorelov A. V., Poverkhnosti ogranichennoi vneshnei krivizny, Izd-vo KhGU, Kharkov, 1956
[13] Burago Yu. D., “O poverkhnostyakh ogranichennoi vneshnei krivizny”, Ukr. geom. sb., 5–6 (1968), 629–643 | MR
[14] Federer H., “Curvature measure theory”, Trans. Amer. Math. Soc., 93 (1959), 418–491 | MR | Zbl
[15] Cohen-Steiner D., Morvan J.-M., “Restricted Delaunay triangulations and normal cycle”, Proc. 19th Ann. ACM Symp. Comput. Geometry, 2003, 237–246
[16] Hildebrandt K., Polthier K., Wardetzky M., “On the convergence of metric and geometric properties of polyhedral surfaces”, Geometriae Dedicata, 123 (2006), 89–112 | DOI | MR | Zbl
[17] Sullivan J. M., “Curvature measures for discrete surfaces”, Proc. Internat. Conf. Computer Graphics and Interactive Techn. (Los-Angeles, California, USA, 2005)
[18] Fenchel W., “On conjugate convex functions”, Canad. J. Math., 1 (1949), 73–77 | DOI | MR | Zbl
[19] Aleksandrov A. D., Vypuklye mnogogranniki, Gostekhteorizdat, M.–L., 1950 | MR
[20] Buzeman H., Convex surfaces, Intersci. Publ., New York, 1957
[21] Evans L. C., Gariepy R. F., Measure theory and fine properties of functions, CRC Press, 1992 | MR | Zbl
[22] Shilov G. E., Gurevich B. L., Integral, mera i proizvodnaya, Nauka, M., 1967
[23] Gauss C. F., Disquisitiones generales circa superficies curvas, Dieterich, Göttingen, 1827
[24] Aleksandrov A. D., “O poverkhnostyakh, predstavimykh raznostyu vypuklykh funktsii”, Izv. AN Kaz. SSR. Ser. matem. i mekhan., 1949, no. 3, 3–20 | MR
[25] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, Gostekhteorizdat, M.–L., 1948
[26] Bakelman I. Ya., Verner A. L., Kantor B. E., Vvedenie v differentsialnuyu geometriyu “v tselom”, Nauka, M., 1973 | MR
[27] Bobenko A. I., Schroder P., “Discrete willmore flow”, Eurographics Symp. on Geometry Proc., 2005, 101–110
[28] Garanzha V. A., “Computation of discrete curvatures based on polar polyhedra theory”, Numerical geometry, grid generation and scientific computing, Proc. Internat. Conf. (Moscow, 10–13 June 2008), Folium, M., 2008, 182–189 | MR
[29] Dubnov Ya. S., Oshibki v geometricheskikh dokazatelstvakh, Fizmatlit, M., 1969
[30] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2007 | MR
[31] Alboul L., “Curvature criteria in surface reconstruction”, Grid Generation: Theory and Applications, Proc. Internat. Workshop (Moscow, 2002), 4–12