Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 1, pp. 71-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Duality principle for approximation of geometrical objects (also known as Eudoxus exhaustion method) was extended and perfected by Archimedes in his famous tractate “Measurement of circle”. The main idea of the approximation method by Archimedes is to construct a sequence of pairs of inscribed and circumscribed polygons (polyhedra) which approximate curvilinear convex body. This sequence allows to approximate length of curve, as well as area and volume of the bodies and to obtain error estimates for approximation. In this work it is shown that a sequence of pairs of locally polar polyhedra allows to construct piecewise-affine approximation to spherical Gauss map, to construct convergent point-wise approximations to mean and Gauss curvature, as well as to obtain natural discretizations of bending energies. Suggested approach can be applied to nonconvex surfaces and in the case of multiple dimensions.
@article{ZVMMF_2010_50_1_a7,
     author = {V. A. Garanzha},
     title = {Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {71--98},
     year = {2010},
     volume = {50},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a7/}
}
TY  - JOUR
AU  - V. A. Garanzha
TI  - Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 71
EP  - 98
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a7/
LA  - en
ID  - ZVMMF_2010_50_1_a7
ER  - 
%0 Journal Article
%A V. A. Garanzha
%T Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 71-98
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a7/
%G en
%F ZVMMF_2010_50_1_a7
V. A. Garanzha. Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 1, pp. 71-98. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a7/

[1] Lantsosh K., Variatsionnye printsipy mekhaniki, Mir, M., 1965

[2] Dacorogna B., Introduction to the calculus of variations, Imperial College, London, 1992

[3] Young W. H., “On classes of summable functions and their Fourier series”, Proc. Roy. Soc. (A), 87 (1912), 225–229 | DOI

[4] Voronoi G. F., “Nouveles applications des parameters continues a la theorie de formes quadratiques”, J. Reine Angew. Math., 134 (1908), 198–287 | Zbl

[5] Edelsbrunner H., Seidel R., “Voronoi diagrams and arrangements”, Discrete computational geometry, 1 (1986), 25–44 | DOI | MR | Zbl

[6] Edelsbrunner H., Geometry and topology for mesh generation, Cambridge monographs on Applied and Computational Mathematics, 6, Cambridge Univ. Press, New York, 2001 | MR

[7] Reshetnyak Yu. G., “Izotermicheskie koordinaty na poverkhnostyakh ogranichennoi integralnoi srednei krivizny”, Dokl. AN SSSR, 174:5 (1967), 1024–1025 | Zbl

[8] Aleksandrov A. D., Zalgaller V. A., Dvumernye mnogoobraziya ogranichennoi krivizny (osnovy vnutrennei geometrii poverkhnostei), Tr. MI AN SSSR, 63, M., 1962 | MR | Zbl

[9] Aleksandrov A. D., “Poverkhnosti, predstavimye raznostyami vypuklykh funktsii”, Dokl. AN SSSR, 72:4 (1950), 613–616 | MR | Zbl

[10] Reshetnyak Yu. G., “Ob odnom obobschenii vypuklykh poverkhnostei”, Matem. sb., 40 (1956), 381–398 | Zbl

[11] Bakelman I. Ya., “Differentsialnaya geometriya gladkikh neregulyarnykh poverkhnostei”, Uspekhi matem. nauk, 11:2 (1956), 67–124 | MR

[12] Pogorelov A. V., Poverkhnosti ogranichennoi vneshnei krivizny, Izd-vo KhGU, Kharkov, 1956

[13] Burago Yu. D., “O poverkhnostyakh ogranichennoi vneshnei krivizny”, Ukr. geom. sb., 5–6 (1968), 629–643 | MR

[14] Federer H., “Curvature measure theory”, Trans. Amer. Math. Soc., 93 (1959), 418–491 | MR | Zbl

[15] Cohen-Steiner D., Morvan J.-M., “Restricted Delaunay triangulations and normal cycle”, Proc. 19th Ann. ACM Symp. Comput. Geometry, 2003, 237–246

[16] Hildebrandt K., Polthier K., Wardetzky M., “On the convergence of metric and geometric properties of polyhedral surfaces”, Geometriae Dedicata, 123 (2006), 89–112 | DOI | MR | Zbl

[17] Sullivan J. M., “Curvature measures for discrete surfaces”, Proc. Internat. Conf. Computer Graphics and Interactive Techn. (Los-Angeles, California, USA, 2005)

[18] Fenchel W., “On conjugate convex functions”, Canad. J. Math., 1 (1949), 73–77 | DOI | MR | Zbl

[19] Aleksandrov A. D., Vypuklye mnogogranniki, Gostekhteorizdat, M.–L., 1950 | MR

[20] Buzeman H., Convex surfaces, Intersci. Publ., New York, 1957

[21] Evans L. C., Gariepy R. F., Measure theory and fine properties of functions, CRC Press, 1992 | MR | Zbl

[22] Shilov G. E., Gurevich B. L., Integral, mera i proizvodnaya, Nauka, M., 1967

[23] Gauss C. F., Disquisitiones generales circa superficies curvas, Dieterich, Göttingen, 1827

[24] Aleksandrov A. D., “O poverkhnostyakh, predstavimykh raznostyu vypuklykh funktsii”, Izv. AN Kaz. SSR. Ser. matem. i mekhan., 1949, no. 3, 3–20 | MR

[25] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, Gostekhteorizdat, M.–L., 1948

[26] Bakelman I. Ya., Verner A. L., Kantor B. E., Vvedenie v differentsialnuyu geometriyu “v tselom”, Nauka, M., 1973 | MR

[27] Bobenko A. I., Schroder P., “Discrete willmore flow”, Eurographics Symp. on Geometry Proc., 2005, 101–110

[28] Garanzha V. A., “Computation of discrete curvatures based on polar polyhedra theory”, Numerical geometry, grid generation and scientific computing, Proc. Internat. Conf. (Moscow, 10–13 June 2008), Folium, M., 2008, 182–189 | MR

[29] Dubnov Ya. S., Oshibki v geometricheskikh dokazatelstvakh, Fizmatlit, M., 1969

[30] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2007 | MR

[31] Alboul L., “Curvature criteria in surface reconstruction”, Grid Generation: Theory and Applications, Proc. Internat. Workshop (Moscow, 2002), 4–12