@article{ZVMMF_2010_50_1_a5,
author = {K. G\"artner and H. Si and J. Fuhrmann},
title = {Boundary conforming {Delaunay} mesh generation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {44--59},
year = {2010},
volume = {50},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a5/}
}
TY - JOUR AU - K. Gärtner AU - H. Si AU - J. Fuhrmann TI - Boundary conforming Delaunay mesh generation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 44 EP - 59 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a5/ LA - en ID - ZVMMF_2010_50_1_a5 ER -
K. Gärtner; H. Si; J. Fuhrmann. Boundary conforming Delaunay mesh generation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 1, pp. 44-59. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a5/
[1] Macneal R. H., “An asymmetrical finite difference network”, Quart. Math. Appl., 11 (1953), 295–310 | MR | Zbl
[2] Voronoi G., “Nouvelles applications des parameters continues a la theorie de formas quadratiques”, Reine Angew. Math., 133 (1907), 97–178
[3] Alen D., Southwell R., “Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder”, Quart. J. Mech. and Appl. Math., 8 (1955), 129–145 | DOI | MR
[4] Il'in A. M., “A difference scheme for a differential equation with a small parameter multiplying the second derivative”, Mat. Zametki, 6:2 (1969), 237–248 | MR
[5] Scharfetter D. L., Gummel H. K., “Large signal analysis of a silicon Read diode”, IEEE Trans. Electron. Dev., 16 (1969), 64–77 | DOI
[6] Eymard R., Fuhrmann J., Gärtner K., “A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems”, Numer. Math., 102:3 (2006), 463–495 | DOI | MR | Zbl
[7] Varga R. S., Matrix iterative analysis, Prentice-Hall, 1962 | MR
[8] Eymard R., Gallouët T., Herbin R., “The finite volume method”, Handbook Numer. Analys., 7, North-Holland, 2000, 715–1022 | MR
[9] Fuhrmann J., Langmach H., “Stability and existence of solutions of time-implicit finite volume schemes for viscous nonlinear conservation laws”, Appl. Numer. Math., 37:1–2 (2001), 201–230 | DOI | MR | Zbl
[10] Gajewski H., Gärtner K., “On the discretization of van Roosbroeck's equations with magnetic field”, Z. angew. Math. und Mech., 76:5 (1996), 247–264 | DOI | MR | Zbl
[11] Gärtner K., “Existence of bounded discrete steady state solutions of the van Roosbroeck system on boundary conforming Delaunay grids”, SIAM J. Sci. Comput., 31 (2009), 1347–1362 | DOI | MR
[12] Glitzky A., Gärtner K., Energy estimates for continuous and discretized electro-reaction-diffusion systems, Preprint 1222. Techn. Rep. WIAS, 2007 | MR | Zbl
[13] Linke A., Divergence-free mixed finite elements for the incompressible Navier–Stokes equation, PhD thesis, Univ. Erlangen, 2008
[14] Delaunay B. N., “Sur la sphere vide”, Izvestia Adakemii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, 1934, no. 6, 793–800 | Zbl
[15] Gabriel K. R., Sokal R. R., “A new statistical approach to geographic analysis”, Systematic Zoology, 18:3 (1969), 259–278 | DOI
[16] Chew P. L., Guaranteed-quality triangular meshes, Techn. Rept. TR 89-983, Dept. Comput. Sci. Cornell Univ., 1989
[17] Ruppert J., “A Delaunay refinement algorithm for quality 2-dimensional mesh generation”, J. Algorithms, 18:3 (1995), 548–585 | DOI | MR | Zbl
[18] Shewchuk J. R., “Tetrahedral mesh generation by Delaunay refinement”, Proc. 14th Ann. Symp. Comput. Geom., 1998, 86–95
[19] Si H., Three dimensional boundary conforming Delaunay mesh generation, PhD thesis, Inst. Math., Techn. Univ., Berlin, 2008
[20] Si H., “An analysis of Shewchuk's Delaunay refinement algorithm”, Proc. 18th Intern. Mesh. Rountable, 2009
[21] Cheng S.-W., Dey T., Edelsbrunner H., et al., “Sliver exudation”, J. Assoc. Comput. Mack., 47 (2000), 883–904 | MR
[22] Erickson J., “Nice point sets can have nasty Delaunay triangulations”, Discreta Comput. Geometry, 30:1 (2003), 109–132 | DOI | MR | Zbl
[23] Si H., Gärtner K., “Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations”, Proc. 14th Internat. Mesh. Roundtable, 2005, 147–163
[24] Li X.-Y., Teng S.-H., “Generating well-shaped Delaunay meshes in 3D”, Proc. 12th Ann. ACM-SIAM Symp. on Disc. Algo, 2001, 28–37 | MR | Zbl
[25] Si H., , 2009, Last retrieved 2009-10-27 http://tetgen.berlios.de
[26] Si H., “Adaptive tetrahedral mesh generation by constrained Delaunay refinement”, Inter. J. Numer. Meth. Engin., 75:7 (2008), 856–880 | DOI | MR | Zbl
[27] Cheng S.-W., Dey T. K., Ramos E. A., Ray T., “Quality meshing for polyhedra with small angles”, Inter. J. Comput. Geometry. Appl., 15 (2005), 421–461 | DOI | MR
[28] Pav S. E., Walkington N. J., “Robust three dimensional Delaunay refinement”, Proc. 13th Internat. Mesh. Roundtable, Sandia Nation. Lab., 2004 | Zbl
[29] Pav S. E., Delaunay refinement algorithm, PhD thesis, Carnegie Mellon Univ., 2003 | MR