On the general nonlinear selfadjoint spectral problem for systems of ordinary differential equations with singularities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 1, pp. 38-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear self-adjoint eigenvalue problem for the general linear system of ordinary differential equations is examined on an unbounded interval. A method is proposed for the approximate reduction of this problem to the corresponding problem on a finite interval. Under the assumption that the initial data are monotone functions of the spectral parameter, a method is given for determining the number of eigenvalues lying on a prescribed interval of this parameter. No direct calculation of eigenvalues is required in this method.
@article{ZVMMF_2010_50_1_a4,
     author = {A. A. Abramov and V. I. Ul'yanova and L. F. Yukhno},
     title = {On the general nonlinear selfadjoint spectral problem for systems of ordinary differential equations with singularities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {38--43},
     year = {2010},
     volume = {50},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a4/}
}
TY  - JOUR
AU  - A. A. Abramov
AU  - V. I. Ul'yanova
AU  - L. F. Yukhno
TI  - On the general nonlinear selfadjoint spectral problem for systems of ordinary differential equations with singularities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 38
EP  - 43
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a4/
LA  - ru
ID  - ZVMMF_2010_50_1_a4
ER  - 
%0 Journal Article
%A A. A. Abramov
%A V. I. Ul'yanova
%A L. F. Yukhno
%T On the general nonlinear selfadjoint spectral problem for systems of ordinary differential equations with singularities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 38-43
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a4/
%G ru
%F ZVMMF_2010_50_1_a4
A. A. Abramov; V. I. Ul'yanova; L. F. Yukhno. On the general nonlinear selfadjoint spectral problem for systems of ordinary differential equations with singularities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 1, pp. 38-43. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a4/

[1] Abramov A. A., Ulyanova V. I., Yukhno L. F., “O samosopryazhennoi nelineinoi spektralnoi zadache dlya gamiltonovykh sistem obyknovennykh differentsialnykh uravnenii s osobennostyami”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1202–1208 | MR

[2] Abramov A. A., Ulyanova V. I., Yukhno L. F., “Ob obschei nelineinoi samosopryazhennoi spektralnoi zadache dlya sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 49:4 (2009), 624–627 | MR | Zbl

[3] Abramov A. A., Konyukhova N. B., “Transfer of admissible boundary conditions from a singular point for systems of linear ordinary differential equations”, Sovjet. J. Numer. Analys. Math. Modelling, 1:4 (1986), 245–265 | DOI | MR | Zbl

[4] Abramov A. A., “O granichnykh usloviyakh v osoboi tochke dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 11:6 (1971), 275–278 | MR | Zbl

[5] Abramov A. A., “O vychislenii sobstvennykh znachenii nelineinoi spektralnoi zadachi dlya gamiltonovykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 41:1 (2001), 29–38 | MR | Zbl