@article{ZVMMF_2010_50_1_a13,
author = {A. M. Blokhin and A. S. Ibragimova and B. V. Semisalov},
title = {Construction of numerical algorithms for the ballistic diode problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {188--208},
year = {2010},
volume = {50},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a13/}
}
TY - JOUR AU - A. M. Blokhin AU - A. S. Ibragimova AU - B. V. Semisalov TI - Construction of numerical algorithms for the ballistic diode problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 188 EP - 208 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a13/ LA - ru ID - ZVMMF_2010_50_1_a13 ER -
%0 Journal Article %A A. M. Blokhin %A A. S. Ibragimova %A B. V. Semisalov %T Construction of numerical algorithms for the ballistic diode problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2010 %P 188-208 %V 50 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a13/ %G ru %F ZVMMF_2010_50_1_a13
A. M. Blokhin; A. S. Ibragimova; B. V. Semisalov. Construction of numerical algorithms for the ballistic diode problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 1, pp. 188-208. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a13/
[1] Anile A. M., Romano V., “Non parabolic band transport in semiconductors: closure of the moment equations”, Cont. Mech. Thermodyn., 11 (1999), 307–325 | DOI | MR | Zbl
[2] Romano V., “Non parabolic band transport in semiconductors: closure of the production terms in the moment equations”, Cont. Mech. Thermodyn., 12 (2000), 31–51 | DOI | MR | Zbl
[3] Blokhin A. M., Bushmanov R. S., Romano V., “Asymptotic stability of the equilibrium state for the hydrodynamical model of charge transport in semiconductors based on the maximum entropy principle”, Internat. J. Eng. Sci., 42:8–9 (2004), 915–934 | DOI | MR
[4] Blokhin A. M., Bushmanov R. S., Romano V., “Nonlinear asymptotic stability of the equilibrium state for the MEP model of charge transport in semiconductors”, Nonlinear Analys., 65 (2006), 2169–2191 | DOI | MR | Zbl
[5] Blokhin A. M., Bushmanov R. S., Romano V., “Global existence for the system of the macroscopic balance equations of charge transport in semiconductors”, J. Math. Analys. Appl., 305 (2005), 72–90 | DOI | MR | Zbl
[6] Blokhin A. M., Iordanidy A. A., “Numerical investigation of a gas dynamical model for charge transport in semiconductors”, COMPEL, 18 (1999), 6–37 | MR | Zbl
[7] Gardner C. L., “Numerical simulation of a steady-state electron shock wave in a submicrometer semiconductor device”, IEEE Transactions on Electron Devices, 38 (1991), 392–398 | DOI
[8] Gardner C. L., Jerome J. W., Rose D. J., “Numerical methods for the hydrodynamic device model: subsonic flow”, IEEE Transactions on Computeraided Design, 8 (1989), 501–507 | DOI
[9] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl
[10] Blokhin A. M., Bushmanova A. S., Mishchenko E. V., “On solution of a nonlinear boundary value problem for a singularly perturbed differential equation”, Comput. Technologies, 6:4 (1999), 27–57 | MR | Zbl
[11] Babenko K. I., Osnovy chislennogo analiza, NITs “Regulyarnaya i khaotich. dinamika”, Moskva–Izhevsk, 2002
[12] Blokhin A. M., Ibragimova A. S., Semisalov B. V., “Konstruirovanie vychislitelnogo algoritma dlya sistemy momentnykh uravnenii, opisyvayuschikh perenos zaryada v poluprovodnikakh”, Matem. modelirovanie, 21:4 (2009), 15–34 | MR | Zbl
[13] Blokhin A. M., Ibragimova A. S., “Numerical method for 2D simulation of a silicon MESFET with a hydrodynamical model based on the maximum entropy principle”, SIAM J. Sci. Comput., 31:3 (2009), 2015–2046 | DOI | MR | Zbl
[14] Gajewski H., Gröger K., Zacharias K., “Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen”, Math. Lehrbüher und Monographien. II. Abteilung, Mathematische Monographien, 38, Akad.-Verlag, Berlin, 1974 | MR | Zbl
[15] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[16] Sobolev S. L., Some application of functional analysis in mathematical physics, Amer. Math. Soc., 1991 | MR | Zbl
[17] Blokhin A. M., Ibragimova A. S., “1D numerical simulation of the MEP mathematical model in ballistic diode problem”, J. Kinetic and Related Models, 2:1 (2009), 81–107 | DOI | MR | Zbl
[18] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[19] Kuznetsov C. V., “Reshenie kraevoi zadachi dlya obyknovennykh differentsialnykh uravnenii”, Vychisl. metody lineinoi algebry, Tr. IM SO AN SSSR, 6, Nauka, Novosibirsk, 1985, 85–110
[20] Romano V., “Nonparabolic band hydrodynamical model of silicon semiconductors and simulation of electron devices”, Math. Meth. Appl. Sci., 24 (2001), 439–471 | DOI | MR | Zbl
[21] Anile A. M., Junk M., Romano V., Russo G., “Cross-validation of numerical schemes for extended hydrodynamical models of semiconductors”, Math. Models Meth. Appl. Sci., 10 (2000), 833–861 | MR | Zbl
[22] Anile A. M., Romano V., Russo G., “Extended hydrodynamical model of carrier transport in semiconductors”, SIAM J. Appl. Math., 61 (2000), 74–101 | DOI | MR | Zbl
[23] Gardner C. L., “Numerical simulation of a steady-state electron shock wave in a submicrometer semiconductor device”, IEEE Trans. Electron Devices, 38 (1991), 392–398 | DOI
[24] Gardner C. L., Jerome J. W., Rose D. J., “Numerical methods for the hydrodynamic device model: subsonic flow”, IEEE Transactions on Computeraided Design, 8 (1989), 501–507 | DOI
[25] Romano V., Russo G., “Numerical solution for hydrodymamical models of semiconductors”, Math. Models Meth. Appl. Sci., 10 (2000), 1099–1120 | MR | Zbl
[26] Romano V., “2D numerical simulation of the MEP energy-transport model with a finite difference scheme”, J. Comput. Phys., 221 (2007), 439–468 | DOI | MR | Zbl