Dispersion equations in the problem of the stability of transonic flows and some of their properties
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 1, pp. 164-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Navier-Stokes equations, asymptotic simplifying techniques are discussed aimed at the description of unsteady boundary-layer processes associated with the formation of instability. The form of the asymptotic series is based on the triple-deck treatment of solutions to boundary value problems (viscous-inviscid interaction). Although most attention is focused on transonic outer flows, a comparative analysis with the asymptotic theory of boundary layer stability in subsonic flows is given. The parameters of internal waves near the lower and upper branches of the neutral curve are associated with different structures of the perturbation field. These parameters satisfy dispersion relations derived by solving eigenvalue problems. The dispersion relations are investigated in complex planes.
@article{ZVMMF_2010_50_1_a12,
     author = {V. I. Zhuk and A. V. Chernyshev},
     title = {Dispersion equations in the problem of the stability of transonic flows and some of their properties},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {164--187},
     year = {2010},
     volume = {50},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a12/}
}
TY  - JOUR
AU  - V. I. Zhuk
AU  - A. V. Chernyshev
TI  - Dispersion equations in the problem of the stability of transonic flows and some of their properties
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 164
EP  - 187
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a12/
LA  - ru
ID  - ZVMMF_2010_50_1_a12
ER  - 
%0 Journal Article
%A V. I. Zhuk
%A A. V. Chernyshev
%T Dispersion equations in the problem of the stability of transonic flows and some of their properties
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 164-187
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a12/
%G ru
%F ZVMMF_2010_50_1_a12
V. I. Zhuk; A. V. Chernyshev. Dispersion equations in the problem of the stability of transonic flows and some of their properties. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 1, pp. 164-187. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a12/

[1] Neiland V. Ya., “Asimptoticheskie zadachi teorii vyazkikh sverkhzvukovykh techenii”, Tr. TsAGI, 1529, M., 1974

[2] Stewartson K., “Multistructured boundary layers on flat plates and related bodies”, Adv. Appl. Mech., 14, 1974, 145–239

[3] Sychev V. V., Ruban A. I., Sychev Vik. V., Korolev G. L., Asimptoticheskaya teoriya otryvnykh techenii, Nauka, M., 1987

[4] Smith F. T., “On the nonparallel flow stability of the Blasius boundary layer”, Proc. Roy. Soc. London. Ser. A, 366:1724 (1979), 91–109 | DOI | Zbl

[5] Zhuk V. I., Ryzhov O. S., “Svobodnoe vzaimodeistvie i ustoichivost pogranichnogo sloya v neszhimaemoi zhidkosti”, Dokl. AN SSSR, 253:6 (1980), 1326–1329 | MR | Zbl

[6] Ryzhov O. S., Zhuk V. I., “Stability and separation of freely interacting boundary layers”, Lect. Notes Phys., 141, 1981, 360–366

[7] Bodonyi B. J., Smith F. T., “The upper branch stability of the Blasius boundary layer, including non-parallel flow effect”, Proc. Roy. Soc. London. Ser. A, 375:1760 (1981), 65–92 | DOI | MR | Zbl

[8] Kozlov V. V., Ryzhov O. S., Vospriimchivost pogranichnogo sloya: asimptoticheskaya teoriya i eksperiment, VTs AN SSSR, M., 1988

[9] Ryzhov O. S., Savenkov I. V., “Asimptoticheskii podkhod v teorii gidrodinamicheskoi ustoichivosti”, Matem. modelirovanie, 1:4 (1989), 61–86 | MR | Zbl

[10] Kozlov V. V., Ryzhov O. S., “Receptivity of boundary layers: asymptotic theory and experiment”, Proc. Roy Soc. London. Ser. A, 429 (1990), 341–373 | DOI | MR

[11] Kachanov Y. S., Ryzhov O. S., Smith F. T., “Formation of solitons in transitional boundary layers: Theory and experiment”, J. Fluid Mech., 251 (1993), 273–297 | DOI | MR

[12] Zhuk V. I., Volny Tollmina-Shlikhtinga i solitony, Nauka, M., 2001

[13] Zhuk V. I., Ryzhov O. S., “Ob asimptotike reshenii uravneniya Orra-Zommerfelda, zadayuschikh neustoichivye kolebaniya pri bolshikh znacheniyakh chisla Reinoldsa”, Dokl. AN SSSR, 268:6 (1983), 1328–1332 | MR | Zbl

[14] Zhuk V. I., “Ob asimptotike reshenii uravneniya Orra-Zommerfelda v oblastyakh, primykayuschikh k dvum vetvyam neitralnoi krivoi”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1984, no. 4, 3–11 | Zbl

[15] Ryzhov O. S., Savenkov I. V., “Ob ustoichivosti pogranichnogo sloya pri transzvukovykh skorostyakh vneshnego potoka”, Prikl. matem. i tekhn. fiz., 1990, no. 2, 65–71

[16] Stewartson K., The theory of laminar boundary layers in compressible fluids, Clarendon Press, Oxford, 1964 | Zbl

[17] Dorodnitsyn A. A., “Pogranichnyi sloi v szhimaemom gaze”, Prikl. matem. i mekhan., 6:6 (1942), 449–486

[18] Dunn D. W., Lin C. C., “On the stability of the laminar boundary layer in a compressible fluid”, J. Aeronaut. Sci., 22:7 (1955), 455–477 | MR | Zbl

[19] Lin C. C., “On the stability of two-dimensional parallel flow. III: Stability in a viscous fluid”, Quart. Appl. Math., 3:4 (1946), 277–301 | MR | Zbl

[20] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[21] Coleman T. F., Li Y., “An interior, trust region approach for nonlinear minimization subject to bounds”, SIAM J. Optimizat., 6 (1996), 418–445 | DOI | MR | Zbl

[22] Coleman T. F., Li Y., “On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds”, Math. Program., 67:2 (1994), 189–224 | DOI | MR | Zbl

[23] Dennis J. E., Jr., “Nonlinear least-squares”, State of the art in numerical analysis, Acad. Press, 1977, 269–312 | MR

[24] Levenberg K., “A method for the solution of certain problems in least-squares”, Quart. Appl. Math., 2 (1944), 164–168 | MR | Zbl

[25] Marquardt D., “An algorithm for least-squares estimation of nonlinear parameters”, SIAM J. Appl. Math., 11 (1963), 431–441 | DOI | MR | Zbl

[26] More J. J., “The Levenberg-Marquardt algorithm: implementation and theory”, Numer. Analys., Lect. Notes in Math., 630, Springer, 1977, 105–116 | MR

[27] More J. J., Garbow B. S., Hillstrom K. E., User Guide for MINPACK 1, Argonne Nat. Lab. Rept. ANL-80-74, 1980

[28] Powell M. J. D., “A Fortran subroutine for solving systems of nonlinear algebraic equations”, Numer. Meth. Nonlinear Algebraic Equations, Ch. 7, 1970 | MR

[29] Gander W., Gautschi W., “Adaptive quadrature—revisited”, BIT, 40 (2000), 84–101 | DOI | MR