@article{ZVMMF_2010_50_1_a11,
author = {A. A. Danilov},
title = {Unstructured tetrahedral mesh generation technology},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {146--163},
year = {2010},
volume = {50},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a11/}
}
A. A. Danilov. Unstructured tetrahedral mesh generation technology. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 1, pp. 146-163. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a11/
[1] Schönhardt E., “Über die Zerlegung von Dreieckspolyedern in Tetraeder”, Math. Ann., 1928, no. 98, 309–312 | DOI | MR
[2] Joe B., “Three-dimensional boundary-constrained triangulations”, Proc. 13th IMACS World Congress, 1992, 215–222
[3] George P.-L., Borouchaki H., “Maillage simplicial d'un polyèdre arbitraire”, C. R. Acad. Sci. Paris. Ser. I, 338 (2004), 735–740 | MR | Zbl
[4] Borouchaki H., Hecht F., Saltel E., George P.-L., “Reasonably efficient Delaunay based mesh generator in 3 dimensions”, Proc. 4th Internat. Meshing Roundtable, 1995, 3–14
[5] Du Q., Wang D., “Recent progress in robust and quality Delaunay mesh generation”, J. Comput. and Appl. Math., 195 (2006), 8–23 | DOI | MR | Zbl
[6] Shewchuk J. R., “Constrained Delaunay tetrahedralizations and provably good boundary recovery”, Proc. 11th Internat. Meshing Roundtable, 2002, 193–204
[7] Ito Y., Shih A., Soni B., “Reliable isotropic tetrahedral mesh generation based on an advancing front method”, Proc. 13th Internat. Meshing Roundtable, 2004, 95–106 | Zbl
[8] Yang Y., Yong J., Sun J., “An algorithm for tetrahedral mesh generation based on conforming constrained Delaunay tetrahedralization”, Comput. and Graphics, 29 (2005), 606–615 | DOI
[9] George P.-L., Borouchaki H., Saltel E., ““Ultimate” robustness in meshing an arbitrary polyhedron”, Internat. J. Numer. Meth. Engng., 58 (2003), 1061–1089 | DOI | MR | Zbl
[10] 3D Generator of Anisotropic Meshes, http://sourceforge.net/projects/ani3d/
[11] 2D Generator of Anisotropic Meshes, http://sourceforge.net/projects/ani2d/
[12] The Common Geometry Module, http://cubit.sandia.gov/cgm.html
[13] Open CASCADE Technology, http://opencascade.org/
[14] Vassilevski Yu., Vershinin A., Danilov A., Plenkin A., Tetrahedral mesh generation in domains defined in CAD systems, Inst. Numer. Math. Moscow, 2005, 21–32 (in Russian)
[15] Nikitin K., Surface meshing technology for domains composed of primitives, Diploma thesis, MSU, Dept. Mech. Math., Moscow, 2007 (in Russian)
[16] George P.-L., Borouchaki H., Delaunay triangulation and meshing. Application to finite elements, Hermes, 1998 | MR
[17] Ivanenko S. A., “Variatsionnye metody postroeniya adaptivnykh setok”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 830–844 | MR | Zbl
[18] Garanzha V., “Max-norm optimization of spatial mappings with application to grid generation, construction of surfaces and shape design”, Proc. Minisymp. in Int. Conf. OFEA, 2001, 61–74
[19] Agouzal A., Lipnikov K., Vassilevski Yu., “Adaptive generation of quasi-optimal tetrahedral meshes”, East-West Journal, 7 (1999), 223–244 | MR | Zbl