Hessian-free metric-based mesh adaptation via geometry of interpolation error
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 1, pp. 131-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents analysis of a new methodology for generating meshes minimizing $L^p$-norms of the interpolation error or its gradient, $p>0$. The key element of the methodology is the construction of a metric from node-based and edge-based values of a given function. For a mesh with $N_h$ triangles, we demonstrate numerically that $L^\infty$-norm of the interpolation error is proportional to $N_h^{-1}$ and $L^\infty$-norm of the gradient of the interpolation error is proportional to $N_h^{-1/2}$. The methodology can be applied to adaptive solution of PDEs provided that edge-based a posteriori error estimates are available.
@article{ZVMMF_2010_50_1_a10,
     author = {A. Agouzal and K. N. Lipnikov and Yu. V. Vassilevski},
     title = {Hessian-free metric-based mesh adaptation via geometry of interpolation error},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {131--145},
     year = {2010},
     volume = {50},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a10/}
}
TY  - JOUR
AU  - A. Agouzal
AU  - K. N. Lipnikov
AU  - Yu. V. Vassilevski
TI  - Hessian-free metric-based mesh adaptation via geometry of interpolation error
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 131
EP  - 145
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a10/
LA  - en
ID  - ZVMMF_2010_50_1_a10
ER  - 
%0 Journal Article
%A A. Agouzal
%A K. N. Lipnikov
%A Yu. V. Vassilevski
%T Hessian-free metric-based mesh adaptation via geometry of interpolation error
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 131-145
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a10/
%G en
%F ZVMMF_2010_50_1_a10
A. Agouzal; K. N. Lipnikov; Yu. V. Vassilevski. Hessian-free metric-based mesh adaptation via geometry of interpolation error. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 1, pp. 131-145. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_1_a10/

[12] Agouzal A., Lipnikov K., Vassilevski Yu., “Adaptive generation of quasi-optimal tetrahedral meshes”, East-West J. Numer. Math., 7 (1999), 223–244 | MR | Zbl

[13] Vasilevskii Yu. V., Lipnikov K. N., “Adaptivnyi algoritm postroeniya kvazioptimalnykh setok”, Zh. vychisl. matem. i matem. fiz., 39:9 (1999), 1532–1551 | MR | Zbl

[14] Hecht F., “A few snags in mesh adaptation loops”, Proc. 14th Internat. Meshing Roundtable, Springer, Berlin–Heidelberg, 2005, 301–313

[15] Huang W., “Metric tensors for anisotropic mesh generation”, J. Comput. Phys., 204 (2005), 633–665 | DOI | MR | Zbl

[16] Chen L., Sun P., Xu J., “Optimal anisotropic meshes for minimizing interpolation errors in $L^p$-norm”, Math. Comput., 76 (2007), 179–204 | DOI | MR | Zbl

[17] Vassilevski Yu., Agouzal A., “An unified asymptotic analysis of interpolation errors for optimal meshes”, Dokl. Math., 72 (2005), 879–882 | Zbl

[18] Buscaglia G., Dari E., “Anisotropic mesh optimization and its application in adaptivity”, Internat. J. Numer. Meth. Engrgs., 40 (1997), 4119–4136 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[19] Frey P., Alauzet F., “Anisotropic mesh adaptation for CFD computations”, Comput. Meth. Appl. Mech. Engrgs., 194 (2005), 5068–5082 | DOI | MR | Zbl

[20] Lipnikov K., Vassilevski Yu., “Parallel adaptive solution of 3D boundary value problems by Hessian recovery”, Comput. Meth. Appl. Mech. Engrgs., 192 (2003), 1495–1513 | DOI | MR | Zbl

[21] Garanzha V., “Computation of discrete curvatures based on polar polyhedra”, Numerical geometry, grid generation and high performance computing (NUMGRID2008), Proc. Internat. Conf., Computing Center RAS, M., 2008, 182–189 \setcounter{enumi}{11} | MR

[22] Agouzal A., Lipnikov K., Vassilevski Yu., “Generation of quasi-optimal meshes based on a posteriori error estimates”, Proc. Internat. Mesh. Roundtable, Springer, Berlin–Heidelberg, 2007, 139–148

[23] D'Azevedo E., “Optimal triangular mesh generation by coordinate transformation”, SIAM J. Sci. Statist. Comput., 12 (1991), 755–786 | DOI | MR

[24] Ciarlet P., Wagschal C., “Multipoint Taylor formulas and applications to the finite element method”, Numer. Math., 17 (1971), 84–100 | DOI | MR | Zbl

[25] Ciarlet P., The finite element method for elliptic problems, North-Holland, 1978 | MR | Zbl

[26] Warburton T., Hesthaven J., “On the constants in hp-finite element trace inverse inequalities”, Comput. Meth. Appl. Mech. Engrgs., 192 (2003), 2765–2773 | DOI | MR | Zbl

[27] Shahbazi K., “An explicit expression for the penalty parameter of the interior penalty method”, J. Comput. Phys., 205 (2005), 401–407 | DOI | Zbl