Well-posedness of difference schemes for semilinear parabolic equations with weak solutions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 12, pp. 2155-2175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The well-posedness of difference schemes approximating initial-boundary value problem for parabolic equations with a nonlinear power-type source is studied. Simple sufficient conditions on the input data are obtained under which the weak solutions of the differential and difference problems are globally stable for all $0\leq t\leq+\infty$. It is shown that, if the condition fails, the solution can blow up (become infinite) in a finite time. A lower bound for the blow-up time is established. In all the cases, the method of energy inequalities is used as based on the application of the Chaplygin comparison theorem, Bihari-type inequalities, and their difference analogues. A numerical experiment is used to illustrate the theoretical results and verify two-sided blow-up time estimates.
@article{ZVMMF_2010_50_12_a6,
     author = {P. P. Matus},
     title = {Well-posedness of difference schemes for semilinear parabolic equations with weak solutions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2155--2175},
     year = {2010},
     volume = {50},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a6/}
}
TY  - JOUR
AU  - P. P. Matus
TI  - Well-posedness of difference schemes for semilinear parabolic equations with weak solutions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 2155
EP  - 2175
VL  - 50
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a6/
LA  - ru
ID  - ZVMMF_2010_50_12_a6
ER  - 
%0 Journal Article
%A P. P. Matus
%T Well-posedness of difference schemes for semilinear parabolic equations with weak solutions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 2155-2175
%V 50
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a6/
%G ru
%F ZVMMF_2010_50_12_a6
P. P. Matus. Well-posedness of difference schemes for semilinear parabolic equations with weak solutions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 12, pp. 2155-2175. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a6/

[1] Pokhozhaev S. I., “O razrushenii reshenii nelineinykh smeshannykh zadach”, Tr. MIRAN, 260, M., 2008, 213–226 | MR

[2] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov S. P., Blow-up in quasilinear parabolic equations, Walter de Gruyter, Dordrecht etc., 1995 | MR | MR | Zbl

[3] Galakhov E. I., “O mgnovennom razrushenii reshenii nekotorykh kvazilineinykh evolyutsionnykh zadach”, Differents. ur-niya, 46:3 (2010), 326–335 | Zbl

[4] Mitidieri E., Pokhozhaev S. I., “Apriornye otsenki i otsutstvie reshenii nelineinykh differentsialnykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIRAN, 234, M., 2001, 3–383

[5] Fujita H., “On the blowing up of solutions to the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 13 (1966), 109–124 | MR | Zbl

[6] Fila M., “Blow-up of solutions of semilinear parabolic equations”, Spec. Lect. (Tohoku Univ., May 9–12 2006)

[7] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[8] Friedman A., “Remarks on nonlinear parabolic equations”, Proc. Symp. Appl. AMS, 13, 1965, 2–23 | MR

[9] Kaplan S., “On the growth of solutions of quasilinear parabolic equations”, Communs Pure Appl. Math., 16 (1963), 305–330 | DOI | MR | Zbl

[10] Brezis H., Cazenave T., “A nonlinear heat equation with singular initial data”, J. Anal. Math., 68 (1996), 277–304 | DOI | MR | Zbl

[11] Bihari I., “A generalization of a lemma of Bellman and its application to uniqueness problems of differential equation”, Acta Math. Acad. Sci. Hungar., 7 (1956), 81–94 | DOI | MR | Zbl

[12] Pinto M., “Integral inequalities of Bihari-type and applications”, Funkcialaj Ekvacioj, 33 (1990), 387–403 | MR | Zbl

[13] Demidovich V. B., “Ob odnom priznake ustoichivosti raznostnykh uravnenii”, Differents. ur-niya, 5:7 (1969), 1247–1255 | Zbl

[14] Matus P., “Stability of difference schemes for nonlinear time-dependent problems”, Comput. Meth. Appl. Math., 3:2 (2003), 313–329 | MR | Zbl

[15] Levine H. A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t = -Au + F(u)$”, Arch. Ration. Mech. Anal., 51 (1973), 371–386 | DOI | MR | Zbl

[16] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[17] Chaplygin S. A., “Novyi metod priblizhennogo integrirovaniya differentsialnykh uravnenii”: S. A. Chaplygin, Izbrannye trudy. Mekhan. zhidkosti i gaza. Matematika, Nauka, M., 1976, 307–362

[18] Vabischevich P. N., “Dvukhsloinye skhemy povyshennogo poryadka approksimatsii dlya nestatsionarnykh zadach matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 50:1 (2010), 118–130 | MR

[19] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[20] Samarskii A. A., Matus P. P., Vabishchevich P. N., Difference schemes with operator factors, Kluwer Acad. Publ., Boston–Dordrecht–London, 2002 | MR | Zbl

[21] Mickens R. E., “Nonstandart finite difference schemes for differential equations”, J. Difference Equations and Applic., 8:9 (2002), 823–847 | DOI | MR | Zbl

[22] Zhou Y., Application of discrete functional analysis to the finite difference methods, Internat. Acad. Publ., Beijing, 1990 | MR

[23] Pokhozhaev S. I., “Ob apriornykh otsenkakh i gradientnykh katastrofakh gladkikh reshenii giperbolicheskikh sistem zakonov sokhraneniya”, Tr. MIRAN, 243, M., 2003, 257–288 | MR | Zbl

[24] Matus P., Irkhin V., Lapinska-Chrzczonowicz M., “Exact difference schemes for time-dependent problems”, Comput. Meth. Appl. Math., 5:4 (2005), 422–448 | MR | Zbl

[25] Iovanovich B. S., Matus P. P., “Koeffitsientnaya ustoichivost differentsialno-operatornykh uravnenii vtorogo poryadka”, Differents. ur-niya, 38:10 (2002), 1371–1377 | MR

[26] Matus P., Kolodynska A., “Nonlinear stability of the difference schemes for equations of isotropic gas dynamics”, Comput. Meth. Appl. Math., 8:2 (2008), 155–170 | MR | Zbl

[27] Matus P., Lemeshevsky S., “Stability and monotonicity of difference schemes for nonlinear scalar conservation laws and multidimensional quasi-linear parabolic equations”, Comput. Meth. Appl. Math., 9:3 (2009), 253–280 | MR | Zbl

[28] Matus P. P., Chuiko M. M., “Issledovanie ustoichivosti i skhodimosti raznostnykh skhem dlya politropnogo gaza s dozvukovymi techeniyami”, Differents. ur-niya, 45:7 (2009), 1053–1064 | MR | Zbl

[29] Matus P. P., Martsinkevich G. L., Chuiko M. M., “Ustoichivost raznostnykh skhem v invariantakh Rimana dlya politropnogo gaza”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 1078–1091 | MR

[30] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Nauka, M., 1987