Additive schemes for certain operator-differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 12, pp. 2144-2154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Unconditionally stable finite difference schemes for the time approximation of first-order operator-differential systems with self-adjoint operators are constructed. Such systems arise in many applied problems, for example, in connection with nonstationary problems for the system of Stokes (Navier–Stokes) equations. Stability conditions in the corresponding Hilbert spaces for two-level weighted operator-difference schemes are obtained. Additive (splitting) schemes are proposed that involve the solution of simple problems at each time step. The results are used to construct splitting schemes with respect to spatial variables for nonstationary Navier–Stokes equations for incompressible fluid. The capabilities of additive schemes are illustrated using a two-dimensional model problem as an example.
@article{ZVMMF_2010_50_12_a5,
     author = {P. N. Vabishchevich},
     title = {Additive schemes for certain operator-differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2144--2154},
     year = {2010},
     volume = {50},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a5/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
TI  - Additive schemes for certain operator-differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 2144
EP  - 2154
VL  - 50
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a5/
LA  - ru
ID  - ZVMMF_2010_50_12_a5
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%T Additive schemes for certain operator-differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 2144-2154
%V 50
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a5/
%G ru
%F ZVMMF_2010_50_12_a5
P. N. Vabishchevich. Additive schemes for certain operator-differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 12, pp. 2144-2154. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a5/

[1] Yanenko N. N., The method of fractional steps, Springer, Berlin, 1971 | MR | Zbl

[2] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1989

[3] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 1999 | MR

[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[5] Lisbona F. L., Vabishchevich P. N., “Operator-splitting schemes for solving elasticity problems”, Comput. Meth. Appl. Math., 1:1 (2001), 188–198 | MR | Zbl

[6] Samarskii A. A., Vabischevich P. N., “Reshenie zadach dinamiki neszhimaemoi zhidkosti s peremennoi vyazkostyu”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1813–1822 | MR

[7] Vabischevich P. N., “Additivnye skhemy (skhemy rasschepleniya) dlya sistem uravnenii s chastnymi proizvodnymi”, Vychisl. metody i programmirovanie, 11:1 (2010), 1–6

[8] Dorodnicyn A. A., “A method for solving three-dimensional problems of an incompressible viscous flow past bodies”, Modern. Probl. Comput. Aerohydrodynamics, CRC Press, M., 1992, 93–102

[9] Dorodnitsyn A. A., Meller N. A., “O nekotorykh podkhodakh k resheniyu statsionarnykh uravnenii Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 8:2 (1968), 393–402 | MR

[10] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, URSS, M., 2009

[11] Samarskii A. A., Matus P. P., Vabishchevich P. N., Difference schemes with operator factors, Hardbound, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[12] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, URSS, M., 2009

[13] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[14] Churbanov A. G., Pavlov A. N., Vabishchevich P. N., “Operator-splitting methods for the incompressible Navier–Stokes equations on non-staggered grids. Part 1: First-order schemes”, Internat. J. Numer. Meth. Fluids, 21:8 (1995), 617–640 | DOI | MR | Zbl

[15] Guermond J. L., Minev P., Shen J., “An overview of projection methods for incompressible flows”, Comput. Meth. Appl. Mech. and Eng., 195:44–47 (2006), 6011–6045 | DOI | MR | Zbl